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Learning Objectives
e Discuss pros and cons of decision modeling using
decision trees vs. a formal deterministic model

e Understand the components and structure of discrete
time Markov models

e Calculate Markov cycles by hand, using Markov bubble
diagram

e Apply methods for Markov cycle correction
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A'Simple Disease Process

e Suppose we want to model the cost-effectiveness of
alternative strategies to prevent a disease from

occurring.

e We start with a healthy population of 25 year olds and
there are three health states people can experience:

1. Remain Healthy
2. Become Sick
3. Death

Back to Website
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A'Simple Disease Process

e Remaining healthy carries no utility decrement (utility
weight = 1.0 per cycle in healthy state)

e Becoming sick carries a 0.25 utility decrement for the
remainder of the person’s life (utility weight = 0.75)

e Death carries a utility value of O.
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A'Simple Disease Process

e There is no cost associated with remaining healthy.
e Becoming sick incurs $1,000 / year in costs.

e Becoming sick increases the risk of death by 300%.

Back to Website
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A Simple Disease Process

A country’s health institute is considering five preventive
care strategies that reduce the risk of becoming sick:

Strategy Description Cost

A Standard of Care $25/year

B Additional 4% reduction in risk  $1,000/year
of becoming sick

C 12% reduction in risk $3,100/year

D 8% reduction in risk $1,550/year

E 8% reduction in risk $5,000/year

Back to Website
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Model Option 1: Decision Tree

e One option would be to use a decision tree to model the
expected utility and costs associated with each strategy.

e Model time horizon: 10 years

e The next slide shows the decision tree for outcomes
experienced in the first year.

Back to Website



VANDERBILT
Center for Health
Economic Modeling

Healthy
(0.8556)

Sick
(0.1376)

Te

Dead
(0.0068)

Healthy
(0.8607)

Sick
(0.1325)

Te

Dead
(0.0088)

Healthy
(0.8711)

Sick

}

(0.1222)

Dead
(0.0067)

[

Healthy
(0.8659)

Sick
(0.1273)

Te

Dead
(0.0068)

Healthy
(0.8659)

Sick
(0.1273)

Te

Dead

Back to Web$&ite

10



VANDERBILT
eeeeeeeeeeeeeee

Model Option 1: Decision Tree

e What limitations do you see?
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Decision Trees

Pros

Cons

Simple, rapid & can
provide insights
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Decision Trees

Pros

Cons

Simple, rapid & can
provide insights

Easy to describe &
understand
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Decision Trees

Pros

Cons

Simple, rapid & can
provide insights

Easy to describe &
understand

Works well with limited
time horizon
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Decision Trees

Pros

Cons

Simple, rapid & can
provide insights

Difficult to include clinical
detail

Easy to describe &
understand

Works well with limited
time horizon
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Decision Trees

Pros

Cons

Simple, rapid & can
provide insights

Difficult to include clinical
detail

Easy to describe &
understand

Elapse of time is not
readily evident.

Works well with limited
time horizon
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Decision Trees

Pros Cons

Simple, rapid & can Difficult to include clinical
provide insights detalil

Easy to describe & Elapse of time is not
understand readily evident.

Works well with limited Difficult to model longer

time horizon (>1 cycle) time horizons
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écision Trees

Year 1 Year 2 Year 3

~ Mortality

I_&M
Mortality

Survive
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Patient
with [
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Failure

Mortality

Failure
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Success

Figure 10.2 Decision tree for peripheral arterial disease (PAD) with a 3-year time horizon.

PTA, percutaneous transluminal angioplasty.
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Next Steps

e Ideally we want a modeling approach that can
incorporate flexibility and handle the complexities that
make decision trees difficult/unwieldy.
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Markov Models

Common approach in decision analyses that adds
additional flexibility.

Pros Cons

Can model repeated events
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Markov Models

Common approach in decision analyses that adds
additional flexibility.

Pros Cons

Can model repeated events

Can model more complex
+ longitudinal clinical
events
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Markov Models

Common approach in decision analyses that adds
additional flexibility.

Pros Cons

Can model repeated events

Can model more complex
+ longitudinal clinical
events

Not computationally
intensive; efficient to
model and debug
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Markov Models

e The advantages of Markov models derive from their
structure around mutually exclusive disease states.

e These disease states represent the possible states or
consequences of strategies or options under
consideration.

e Because there are a fixed number of disease states the
population can be in, there is no need to model complex
pathways, as we saw in the decision tree “explosion” a
few slides back.

Back to Website
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Markov Trees

It i1s also common to pair a Markov model with a decision
tree.]
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Markov Trees

It i1s also common to pair a Markov model with a decision
tree.]
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Markov Tree

A simple decision tree is implicit in nearly every decision analysis.

=

Treatment A

Treatment B

Healthy: Treatment C

5 o

Treatment D

Treatment E

Sle
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Markov Tree: Example

Treatment A:
Treatment A

=

0.856
Treatment B ’

0138

0.007

Healthy: Treatment C

5 o

Treatment D

Treatment E

Sle
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Markov Tree: Example

Treatment A:

Remain Healthy

q Healthy
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6 5 Survive

Enter prob
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ViR :
hen choosing a model structure...

“Things should be made as simple as possible, but not
simpler” - Albert Einstein
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Key ‘characteristics

Allows for health state transitions over time
Individuals can only exist in one state at a time (mutually exclusive health states)

At the beginning or end of each cycle, patients transition across health states via
transition probabilities & individuals stay in health state for entire cycle length

Probability of transitioning depends on the current state (“no memory”); (tunnel
states can account for this potential limitation)

Transition probabilities remain constant over time (apart from embedded
lifetables)

Results report “average” of cohort

Back to Website
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Key ‘characteristics

“CYCLE” = Minimum amount of time that any individual will spend in a state
before possible transition to another state

e More on this in the next slides

Back to Website
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Steps

1. Define the decision problem

2. Conceptualize the model

3. Parameterize the model

4. Calculate or define the transition probability matrix

5. Run the model

Back to Website
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Problem
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Step 1: Define the Decision Problem

We defined the decision problem earlier in this lecture, so
we’'ll repeat the basic objectives briefly here.

Back to Website
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Step 1: Define the Decision Problem

Goal: model the cost-effectiveness of alternative strategies
to prevent a disease from occurring.

Strategy Description Cost

A Standard of Care $25/year

B Additional 4% reduction in risk  $1,000/year
of becoming sick

C 12% reduction in risk $3,100/year

D 8% reduction in risk $1,550/year

E 8% reduction in risk $5,000/year
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Treatment A

-

Treatment B
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Treatment C
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Treatment D
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Treatment E
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2. Conceptualize the
Markov Model
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2 @bnceptuahze the Markov Model

Two major steps:
® 2a. Determine health states

® 2b. Determine transitions
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Stép 2: Conceptualize the Model

@ 2a. Determine health states

e There are three health states people can experience:
1. Remain Healthy

2. Become Sick
3. Death

Back to Website
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Stép 2: Conceptualize the Model
@ 2a. Determine health states

e There three health states people can experience:
1. Remain Healthy
2. Become Sick
3. Death

® 2b. Determine transitions

e Individuals who become sick cannot transition back to
healthy.

Back to Website
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“Bubble Diagram”

State transition (“bubble”) diagrams are useful
visualizations of a Markov model.
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3. Parameterize the
Model
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3 Parametenze the Model

Basic steps
@ 3a. Determine basic model parameters

@ 3b. Curate and define model inputs

Back to Website
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3. Parameterize the Model

Basic steps

@ 3a. Determine basic model parameters

e Define t
e Define t

e Define t
death)

ne population (e.g., 25 year old females)

ne Markov cycle length (e.g., 1-year cycle)

ne time horizon (e.g., followed until age 100 or
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3a. Define the Markov Cycle Length

e Fundamentally, we're modeling a continuous time
process (e.g., progression of disease).

o A discrete time Markov model “breaks up” time into
“chunks” (i.e., “cycles”).

e A consequence is that the model will show us what
fraction start out a cycle in a given state, and what
fraction end up in each state at the end of the cycle.

Back to Website
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3a. Define the Markov cycle length
e Suppose we used a one-year cycle for the healthy-sick-
dead model.

e Think about the underlying (continuous time) disease
process.

= Recall that becoming sick substantially increases the
likelihood of death.

o If we're not careful, what are we (implicitly) assuming can
and can’t happen in a single cycle?

Back to Website
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3a. Define the Markov Cycle Length

One Year Cycle

HEALTHY SICK DEAD
January December
(Beginning of cycle) (End of cycle)

Back to Website
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3a. Define the Markov Cycle Length

The challenge of selecting an appropriate cycle length boils down to how we deal
with competing risks.

e Competing risks: individuals can
transition from their current health
state to two or more other health
states.

Back to Website
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3a. Define the Markov Cycle Length

The challenge of selecting an appropriate cycle length boils down to how we deal
with competing risks.

e If we're not careful, we could
effectively rule out the possibility of
Healthy = Sick—> Dead within a cycle.

e The model would look like a basic
Healthy = Dead transition, but they
took a detour through Sick along the
way!

Back to Website
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3a. Define the Markov Cycle Length

Pros Cons
Can model repeated events Competing risks are a
challenge

Can model more complex + longitudinal clinical
events

Not computationally intensive; efficient to model
and debug

Back to Website

59



VANDERBILT

3a. Define the Markov Cycle Length

e It may be tempting to simply shorten the cycle length
(e.g., use 1 day cycle vs. 1 year cycle).

e For a 75 year horizon, how many cycles would that be?
m 27 375!

e Any possible issues with this?

Back to Website
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3a. Define the Markov Cycle Length

e Shortening the cycle creates a computational challenge.

e Base case requires 27,375 daily cycles.

e Now suppose we want to run 2,000 probabilistic
sensitivity analysis model runs.

= We now have 57,750,000 cycle runs to contend with!

Back to Website
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3a. Define the Markov Cycle Length

Pros Cons

Can model repeated events Can only transition once in a given cycle

Can model more complex + longitudinal Shortening the cycle can create
clinical events computational challenges.

Not computationally intensive; efficient
to model and debug

Back to Website
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More challenges ...
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3a. Define the Markov Cycle Length

More challenges ...

e Markov models are “memoryless” - they don’t remember
what happened before the current cycle.

= If your risk of transition to a sicker health state
depends on events that happened earlier in time, the
model can’t explicitly account for this.

Back to Website
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3a. Define the Markov Cycle Length

More challenges ...

e There are workarounds known as “tunnel states” to get
around this problem, though these are difficult to do and
present their own challenges

= We won'’t cover them this week but we can provide
references if you want to explore!
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3a. Define the Markov Cycle Length

Pros Cons

Can model repeated events Can only transition once in a given cycle

Can model more complex + longitudinal Shortening the cycle can create
clinical events computational challenges.

Not computationally intensive; efficient  Shortening cycle can cause “state
to model and debug explosion” if tunnel states are used

Back to Website
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3a. Define the Markov Cycle Length

e Jt's also advisable to pick a cycle
length that aligns with the
clinical/disease timelines of the
decision problem.

= Treatment schedules.
= Acute vs. chronic condition.

e Another option is to incorporate
“short-run” events that happen early in
the course of a disease/intervention
within the decision tree, then allow the
Markov model to model longer-term
health consequences.

Back to Website
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3.'Parameterize the Model
@ 3b. Curate and define model inputs

e & 3b.i. Source and define the base case values.

e @ 3b.ii. Source and define sources of uncertainty.

Back to Website

68



v VANDERBILT

3.'Parameterize the Model
@ 3b. Curate and define model inputs

e Rate of disease onset
e Health state utilities and costs

e Hazard ratios, odds ratios or relative risks for different
strategies.

e ... and so on.

Back to Website
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3. Parameterize the Model

We defined many of the underlying parameters earlier in
this lecture, so we'll repeat them briefly here.

Back to Website
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3. Parameterize the Model

e We start with a healthy population of 25 year olds and
follow them until age 100 (or death, if earlier).

e Remaining healthy carries no utility decrement (utility
weight= 1.0)

e Becoming sick carries a 0.25 utility decrement for the
remainder of the person’s life (utility weight = 0.75)

e Death carries a utility weight value of ©.

Back to Website
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3. Parameterize the Model

e There is no cost associated with remaining healthy.

e Becoming sick incurs $1,000 / year in costs.

e Becoming sick increases the risk of death by 300%.

Back to Website
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3. Parameterize the Model

Each strategy has a different cost and impact on the
likelihood of becoming sick.

Strategy Description Cost

A Standard of Care $25/year

B Additional 4% reduction in risk  $1,000/year
of becoming sick

C 12% reduction in risk $3,100/year

D 8% reduction in risk $1,550/year

E 8% reduction in risk $5,000/year

Back to Website
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3. Parameterize the Model

‘ (1) It is critical to follow a formal process for parameterizing your model.

e Often, parameters are drawn from the published
literature, and it is important to track the source
(published value, assumption, etc.) for each model
parameter.

= For example, the percent risk reduction parameter for
each strategy may come from different clinical trials.

= The parameter governing death from background
causes may be derived from mortality data.

Back to Website
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3."Parameterize the Model

‘ @ It is critical to follow a formal process for parameterizing your model.

e Some parameters may just be values (e.g., cost of Strategy A is $25/yr)
e Some parameters may be functions of other parameters.

= For example, suppose we want to follow a cohort of 25 year olds until age 100
or death, if it occurs earlier.

= In that case we have two “fixed” parameters: the starting age, and the
maximum age.

= We can use these two parameters to infer the total number of cycles we need to
run.

Back to Website



VANDERBILT
E’ Center for Health_

3. Parameterize the Model

‘ (1) It is critical to follow a formal process for parameterizing your model.

e Parameters also have various “flavors”:
1. Probabilities
2. Rates
3. Hazard ratios
4. Costs
5. Utilities
o. etc.

Back to Website
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3. Parameterize the Model

‘ (1) It is critical to follow a formal process for parameterizing your model.

e All of the above highlight the importance of adopting a
formal process for naming and tracking the value, source,

and uncertainty distribution of all model parameters in
one place.

e \We recommend a structured approach based on
parameter naming conventions and parameter tables.

Back to Website
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3. Parameterize the Model

Naming conventions:

type prefix
Probability P_
Rate r_
Matrix m_
Cost C_
Utility u_

Hazard Ratio hr_

Back to Website
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Parameter Table

param

n_age_init

n_age_max

u_H

c_trtA

c_trtB

c_trtC

n_cycles

base_case

25.00
100.00
1.00
0.75
1000.00
25.00
1000.00

3100.00

formula

(n_age_max -
n_age_init)

Parameter Table

description
Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick

(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon

Back to Website
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distribution

beta(shapel =
200, shape2 = 3)

beta(shape1 =130,
shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale = 83

79

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al. (2022)

Assumption

) Assumption
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aram C

olumn is the short name of the parameter

param base_case
n_age_init 25.00
n_age_max 100.00
u_H 1.00
u_S 0.75
c_S 1000.00
C_trtA 25.00
c_trtB 1000.00
c_trtC 3100.00

formula

(n_age_max -
n_age_init)

Parameter Table

description
Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick
(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon

Back to Website

distribution

beta(shapel =
200, shape2 = 3)

beta(shape1 = 130,
shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale = 83

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al. (2022)

Assumption

) Assumption
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§e is the parameter value for the base case.

ase_Ca

param

n_age_init

n_age_max

u_H

c_trtA

c_trtB

c_trtC

n_cycles

base_case formula

25.00
100.00
1.00
0.75
1000.00
25.00
1000.00

3100.00

(n_age_max -
n_age_init)

Parameter Table

description
Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick

(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon

Back to Website

distribution

beta(shapel =
200, shape2 = 3)

beta(shapel = 130,
shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale = 83

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al. (2022)

Assumption

) Assumption
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E‘gﬁﬁr‘ﬁe‘iéﬁ
ormita"defines model parameter formulas for parameters that are functions of other
model parameters.

Parameter Table

param base_case formula description notes distribution source

n_age_init 25.00 Age at baseline ';Aa()rgfrgtger

u_H 1.00 Eéiellim“\;v(e;g)ht i ggg’jtﬂ:gﬁ;i 3) Leech et al. (2022)
u_s 0.75 lSJigLit{S‘;veight of Sﬁ;i(ji‘ T 130, | eech et al. (2022)
¢S 1000.00 ,(Asn)nual cost of sick 22r.2tn§é§|réa£ez;5) grgggi et al.
C_trtA 25.00 2°St S USRI ?;g'ln;i;slzipg): Martin et al. (2022)
c_trtB 1000.00 (B:OSt S EEWEAL ?;n;rgaa:(eszaegp; 3:) Assumption

c_trtC 3100.00 805t o R e gg‘?ﬂﬁ (SQ:IZe::SB) Assumption
n_cycles - gn__aaggee__irrm?te)‘x - Time horizon
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param

n_age_init
n_age_max

u_H

Cc_trtA
c_trtB
c_trtC

n_cycles

base_case formula

25.00
100.00
1.00
0.75
1000.00
25.00
1000.00

3100.00

(n_age_max -
n_age_init)

&scription provides a text description of the parameter.

Parameter Table

description

Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick
(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon

Back to Website

distribution

beta(shapel =
200, shape2 = 3)

beta(shapel1 = 130,
shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale = 83

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al. (2022)

Assumption

) Assumption
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param

n_age_init
n_age_max

u_H

Cc_trtA

c_trtB
c_trtC

n_cycles

base_case formula

25.00
100.00
1.00
0.75
1000.00
25.00

1000.00

3100.00

(n_age_max -
n_age_init)

Parameter Table

description
Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick
(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon

Back to Website

distribution

beta(shapel =
200, shape2 = 3)

beta(shapel = 130,

shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale =
83)

S an optional column where you add additional notes or context for the
parameter.

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al. (2022)

Assumption

Assumption
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distribtition specifies the uncertainty distribution for the parameter. It is used for

probabilistic sensitivity analyses, which we cover in our intermediate (week-long)

workshop.

param

n_age_init

n_age_max

c_trtA

c_trtB
c_trtC

n_cycles

base_case formula

25.00
100.00
1.00
0.75
1000.00
25.00

1000.00

3100.00

(n_age_max -
n_age_init)

Parameter Table

description
Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick
(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon
Back to Website

distribution

beta(shapel =
200, shape2 = 3)

beta(shapel1 =130,
shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale =
83)

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al.
(2022)

Assumption

Assumption
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Provides the source for the parameter. It could be a published research

article, an assumption, or just simply an unsourced modeling parameter (e.g., the

starting age of the modeled cohort).

param

n_age_init

n_age_max

c_trtA

c_trtB

c_trtC

n_cycles

base_case formula

25.00
100.00
1.00
0.75
1000.00
25.00

1000.00

3100.00

(n_age_max -
n_age_init)

Parameter Table

description
Age at baseline

Maximum age of
followup

Utility weight of
healthy (H)

Utility weight of
sick (S)

Annual cost of sick
(S)

Cost of treatment
A

Cost of treatment
B

Cost of treatment
C

Time horizon
Back to Website

distribution

beta(shapel =
200, shape2 = 3)

beta(shape1 =130,
shape2 = 45)

gamma(shape =
44.4, scale = 22.5)

gamma(shape =
12.5, scale = 2)

gamma(shape =
12, scale = 83.3)

gamma(shape =
36.144, scale =
83)

source

Modeling
Parameter

Modeling
Parameter

Leech et al. (2022)

Leech et al. (2022)

Graves et al.
(2022)

Martin et al.
(2022)

Assumption

Assumption
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4. Calculate or define
the transition
probability matrix
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ning the Transition Probability Matrix

e The transition probability matrix is a square matrix that
defines the probability of transitioning from one health
state to another health state in a single time step.

e Constructing the matrix is a fairly technical, but fairly
straightforward process.

= We will skip over this process for now, but come back
to it later today!

Back to Website
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Transition Probability Matrix

Healthy Sick Dead
Healthy ©.856 0.138 0.907
Sick N 0.982 0.018
Dead \\ \\ 1

Back to Website
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5. Run the Model

Back to Website
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Executing the model requires two inputs

Health State Occupancy at Beginning of Cycle

Transition Probability Matrix

Back to Website
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Beginning of Cycle

:Iealth State Occupancy at

Back to Website

Transition Probability
Matrix
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:Iealth State
Occupancy at
Beginning of Cycle

S —

HSD
100

Transition
Probability
Matrix

P —

H S D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

Back to Website
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Transition Health State
Probability Occupancy at End of

Health State Occupancy
at Beginning of Cycle

Matrix Cycle
s = P = s- P =
HSD H S D H S D
1 00 H 0.856 0.138 0.007 0.856 0.138 0.007

S 0.000 0.982 0.018
D 0.000 0.000 1.000

Back to Website
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Transition Health State
Probability Occupancy at End of

Health State Occupancy
at Beginning of Cycle

Matrix Cycle
s = P = s- P =
HSD H S D H S D
1 00 H 0.856 0.138 0.007 0.856 0.138 0.007

S 0.000 0.982 0.018
D 0.000 0.000 1.000

Back to Website
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at Beginning of Cycle

S —

HSD
100

H S D
0.856 0.138 0.007

n

n
o

Health State Occupancy

o

Transition

Matrix

P =

H

.856
.000
.000

.856
.000
.000

S
0.138 0.
.982
0.000 1.

o
o

0.138 0.
.982
0.000 1.

o
o

Back to Website

Probability

D
007

.018

000

007

.018

000

Health State
Occupancy at End of
Cycle

s-P =

H S D
0.856 0.138 0.007

H S D
0.733 0.254 0.015
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Transition Health State
Probability Occupancy at End of

Health State Occupancy
at Beginning of Cycle

Matrix Cycle
S — jF) p— S - jF) p—

HSD H S D H S D
1 0O H 0.856 0.138 0.007 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

H S D H g D H S D
0.856 0.138 0.007 H 0.856 0.138 0.007 0.733 0.254 0.015
S 0.000 0.982 0.018
D 0.000 0.000 1.000

H S D H S D
H S D
0.733 0.254 0.015 0.627 0.35 0.025

H 0.856 0.138 0.007
.000 0.982 0.018
D 0.000 0.000 1.000

n
o

Back to Website
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Health State Occupancy at End of Cycle

H S D
0.856 0.138 0.007
H S D
0.73274 0.25364 0.015476
H S D

0.62722 0.3502 0.025171

Back to Website
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Markov Trace
Health State Occupancy Over Ten Cycles

cycle

1

0
1
2
3
4
5
6
7
8
9
0

H
1.00000
0.85600
0.73274
0.62722
0.53690
0.45959
0.39341
0.33676
0.28826
0.24675
0.21122

O O OO O O O O o o oo

S

.00000
.13800
.25364
.35020
.43045
.49679
.55127
.59564
.63139
.65981
.68198

O O O O O O O O O O o

D

.000000
.007000
.015476
.025171
.035865
.047371
.059531
.072207
.085286
.098669
.112273

Back to Website
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Calculate cycles by
hand
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In-class example

e A new drug was developed for cancer patients in remission to decrease their
chance of relapse

e This drug is $10,000 per year (2022 USD)

e Research question: Is the new drug cost-effective compared to the current
standard of care?

e |et's say we want to model this over a 4-year time horizon

Back to Website
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In-class example

Standard of Care New Drug
Healthy to Stage 1 5%

Healthy to Stage 2 2%
Healthy to Stage 3 1%
Stage 1to Stage 2 10%

Stage 1to Remission 25%

Stage 2 to Stage 1 5%

Stage 2 to Stage 3 15%

Stage 2 to Remission 20%

Stage 3 to Stage 2 5%

Stage 3 to Death 45%
Remission to Stage1 10% 2%
Remission to Stage 2 5% 1%

Back to Website
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In-class example

STANDARD
OF CARE

5%
92%

CYCLE LENGTH

2%
STAGE | 1 year HEALTHY

1%

HEALTHY STAGE Il REMISSION

Back to Website
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In-class example

STANDARD
OF CARE

STANDARD
STAGE | OF CARE HEALTHY STAGE Il

HEALTHY

Back to Website
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In-class example

STAGE Il

STANDARD
OF CARE
STANDARD
OF CARE HEALTHY .
100%
HEALTHY . . ‘ DEATH

Back to Website
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n-class example

n NEW DRUG
STAGE |
Y 92% 5%
STANDARD - -l
10A, 0%
92% 4 5%
N  85% % 15% | " 100%

2% 50%
()

HEALTHY

—)

45%

1%

Back to Website
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In-class example

STAGE |
5%
92%
2%
HEALTHY STAGE Il
5%
1%

45%

REMISSION

MOVING OUT OF STAGE I:
(a) .65*0 (0 pplin Stage 1, Cycle 0)
OR

(b) 1-SUM (pStageltoRemission,
pStageltoStage2))*those in
Stage 1in Cycle O

5%
92%
2%
HEALTHY
! 1%
0.92*1,000 (from Cycle 0)

OR [1-SUM of the probability
of the people leaving the
Health state, HEALTHY]*1,000

Back to Website

STAGE |

STAGE I

MOVING INTO STAGE I:

- 0.05%1,000 + 0.1*0 + 0.05

REMISSION

0
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In-class example

r Health

STAGE |
5%
92%
2%
HEALTHY STAGE Il
5%
1%

45%

REMISSION

5%
92%

2%
HEALTHY

MOVING OUT OF STAGE II:
(a) .60*0 (0 pplin Stage 2, Cycle 0)
OR

(b) (1-SUM(pStage2toStagel,
pStage2toRemiss,
pStage2toStage3))*those in
Stage 2 in Cycle 0

Back to Website

STAGE |

STAGE I

5%

MOVING INTO STAGE II:

- 0.02*1,000 + +
" 0.05*0 + 0.05*0

REMISSION
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An‘example Markov Trace (75 year
horizon)

Cycle Healthy Sick Dead
\ 1.000 0.000 0.000
1 0.856 0.138 0.007
2 0.732 0.253 0.015
3 0.626 0.349 0.025
4 0.536 0.429 0.835
) 0.458 0.495 0.046
75 (End) © 0.282 0.718

Back to Website
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Markov Traces

e Often we are modeling several competing strategies.
e Each strategy has its own transition probability matrix.

e Therefore, each strategy will have it’'s own Markov trace.

Back to Website
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Calculating Outcomes

e With our markov traces complete, we can calculate
expected outcomes (e.qg., costs, QALYs, DALYs, etc.).

e Much like we did with decision trees, we need to define
“payoffs” for each health state.

Back to Website
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Defining Payoffs

e Cost outcomes: Cost of being healthy, sick, dead
(including any additional costs of treatment/intervention,
if applicable).

e QALY outcomes: Utility weight of being healthy (usually
1.0), sick, dead (usually ©.9).

e DALY outcomes: Disability weights of being sick (YLD)
and remaining life expectancy based on reference life
table (YLL)

Back to Website

117



118
VANDERBILT

e We can calculate the total payoff for each cycle by
multiplying the number or fraction of the cohort in each
health state by its payoff value, and adding them
together.

Example Markov Trace (two cycles):

Cycle Healthy Sick Dead
) 1.000 0.000 0.000
1 0.856 0.138 0.007

Back to Website



VANDERBILT

Center for

Example: Life Years
e We'll build our example using a simple outcome:
expected life years under a given strategy.
o Payoffs:
» Healthy: 1.0
= Sick: 1.0 [they're still alive!]
= Dead: 0.0

Back to Website

119



VANDERBILT 120

Center for Health

Example: Life Years

e To get the total “payoff” for a given cycle, we multiply the
fraction of the cohort in a given health state by the payoff
associated with that health state.

e Do this for each health state, and add them together to
get the total.

Cycle Healthy Sick Dead LY
) 1.000 0.000 0.800
1 0.856 0.138 0.007

Back to Website
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Example: Life Years

What is the LY “payoff” for Cycle 0?

Cycle Healthy Sick

Dead

LY

\

1.000 0.000 0.000

.

0.856 0.138

Back to Website
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Example: Life Years
What is the LY “payoff” for Cycle 0?

Cycle Healthy Sick Dead LY

) 1.000 0.000 0.000 1.0 =10
*1.0 +
0.0 * 1.0
+ 0.0 *
0.0

1 0.856 0.138 0.007

Back to Website
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Example: Life Years
What is the LY “payoff” for Cycle 1?

123

Cycle Healthy Sick Dead LY

) 1.000 0.000 0.000 1.0

1 0.856 0.138 0.007 0.994 = 0.856
*1.0 + 0.138 *
1.0 + 0.007 *
0.0

... and so on.

Back to Website
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Example: Life Years

Cycle Healthy Sick Dead LY

\ 1.000 0.000 0.000 1

1 0.856 0.138 0.007 0.993
2 0.732 0.253 0.015 0.985
3 0.626 0.349 0.025 0.975
4 0.536 0.429 0.035 0.965
o) 0.458 0495 0.046 0.954
75 (End) © 0.282 0.718 0.282

Back to Website
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Example: Costs

e Now suppose we want to calculate costs.
o Payoffs:

= Healthy: $0

= Sick: $1,000

= Dead: $0

Back to Website
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Example: Costs

What is the Cost “payoff” for Cycle 0?

Cycle Healthy Sick Dead Cost
\\ 1.000 0.000 0.000
1 0.856 0.138 0.007

Back to Website
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Example: Costs
What is the Cost “payoff” for Cycle 0?
Cycle Healthy Sick Dead Cost
o 1.800 0.900 0.900 0 =180*
0 +0.0*
1000 + 0.0
* Q
1 0.856 9.138 0.007

Back to Website
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Example: Costs

What is the cost “payoff” for Cycle 1?

Cycle Healthy Sick Dead Cost
\\ 1.000 0.000 0.000 O
1 0.856 0.138 0.007 138 = 0.856*0+0.138*1000+0.007*0

... and so on.

Back to Website
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Other Outcomes

e We can repeat a similar process for health outcomes
(e.g., QALYs, YLDs) by multiplying the “payoff” (e.g., utility
weight, disability weight) for a given health state by the
fraction of the cohort in that health state in the cycle.

Back to Website
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Calculating Total
Expected Outcomes

Back to Website



132

Ve
j‘r‘fﬂél Outcomes

Back to Website



VANDERBILT
E’ Center fc

O

or Health

tal Life Years

Let’s look at the Markov trace and cycle outcomes for the
Life Year outcome.

Cycle Healthy Sick Dead LY (single cycle)
) 1.000 0.000 0.000 1

1 0.856 0.138 0.8007 0.993

2 0.732 0.253 0.015 0.985

3 0.626 0.349 0.025 0.975

4 0.536 0.429 0.035 0.965

) 0.458 0.495 0.046 0.954

/5 (End) O 0.282 0.718 0.282

Back to Website
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Life'years

We can create a new column that accumulates life years

over each cycle.

Cycle Healthy Sick Dead LY (single cycle) LY (cumulative)

) 1.000 0.000 0.000 1 1

1 0.856 0.138 0.007 0.993 1+ 0.993 =1.993
2 0.732 0.253 0.015 0.985

3 0.626 0.349 0.025 0.975

4 0.536 0.429 0.035 0.965

) 0.458 0.495 0.046 0.954

/75 (End) \ 0.282 0.718 0.282

Back to Website
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Life'years

135

Cycle Healthy Sick Dead LY (single LY
cycle) (cumulative)
) 1.000 0.000 0.000 1 1
0.856 0.138 0.007 0.993 1.993
2 0.732 0.253 0.015 0.985 1+ 0.993 +
0.985 =
2.978
0.626 0.349 0.025 0.975
4 0.536 0.429 0.035 0.965
5 0.458 0.495 0.046 0.954
75 (End) ) 0.282 0.718 0.282

Back to Website
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Liféyears

e The cumulative LYs for an individual starting in the Healthy state is 44.825

e Note that this is within a 75 years time horizon

Cycle Healthy  Sick Dead LY (single cycle) LY (cumulative)
\ 1.000 0.000 0.000 1 1

1 0.856 0.138 0.007 0.993 1.993

2 0.732 0.253 0.015 0.985 2.978

3 0.626 0.349 0.025 0.975 3.954

4 0.536 0.429 0.035 0.965 4.919

) 0.458 0.495 0.046 0.954 5.872

75 (End) \ 0.282 0.718 0.282 44.825

Back to Website
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“Total Outcomes
e We can do a similar exercise to get total costs, total
QALYs, total DALYSs, etc.

e However, it's not that simple. There are some extra
complications we have to deal with.

= Discounting

= Cycle correction

Back to Website
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Cycle correction
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e 'problem

e In real life, events could occur at any points in a given
cycle, but a Markov model assumes all events occur
either at the beginning or end of each cycle

e Time 1s continuous, so are survival/event-free survival
curves

e When we discretize time by using a fixed cycle length, we
can make two assumptions

= Suppose this is a simple Well — Dead process

Back to Website
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N7 Levter o eattn
ic Mgdeling
j’l“hé problem
Assuming death happens at the end of Assuming death happens at the start of
cycle (A) cycle (B)
A, B,
| N
02 I %( oad . ;r %
0 J l :. T | B e s e 0 bed i | i ?I | S e
2 > O O > & b H & 2B @S A T % » % B 4 % % D & D O b 4L S e H

Underestimates state membership in

Overestimates state membership in Well
Well

Source
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j’l“l‘*lé problem

Start End
1-year cycle COUNT

Assume events occur at beginning of cycle
—= = count subjects at end of cycle
=> underestimates LYs

Assume events occur at end of cycle
—= = count subjects at beginning of cycle
= overestimates LYs

Start End
COUNT 1-year cycle

Back to Website
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Half-cycle correction

A,

Source
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Half-cycle correction

A, "
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ar at
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9l l.< 03
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E
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c
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-
e
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Source

Back to Website



145
VANDERBILT

Center for Healt

Half-cycle correction

e Multiply the outcomes by 1/2 in the first and last cycle.
e Shifting the computed, discrete state membership curve to the left by 1/2 cycle.
e Essentially assuming that events happen in the middle of cycle

Source
Back to Website
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Half-cycle correction
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Apply cycle correction
methods to our markov
trace...
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Half-cycle correction

e Multiply the outcomes by 1/2 in the first and last cycle.

Cycle Healthy Sick Dead LY (single cycle, LY (cumulative)
adjusted)

) 1.000 0.000 0.000 1*0.5 0.5

1 0.856 0.138 0.007 0.993 0.5 + 0.993 =
1.493

2 0.732 0.253 0.015 0.985 2.478

3 0.626 0.349 0.025 0.975 3.454

4 0.536 0.429 0.035 0.965 4.419

5 0.458 0.495 0.046 0.954 5.372

75 (End) ) 0.282 0.718 0.282 *0.5 44184

@ This number is smaller than our original estimate without half-cycle correction (44.825!)

Back to Website



150
VANDERBILT
Center for Health_

Summary

e Once we have total (discounted, half-cycle corrected)

outcomes for each strategy, we can turn to conducting
incremental cost-effectiveness analysis.

e \We covered these methods yesterday!
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Markov Models

Pros Cons

Can model repeated events Can only transition once in
a given cycle

Can model more complex Shortening the cycle can

+ longitudinal clinical create computational
events challenges.

Not computationally Shortening cycle can cause
intensive; efficient to “state explosion” if tunnel

model and debug states are used

Back to Website



Next up: Markov Case
Study




