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Learning Objectives
and Outline
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Learning Objectives

Discuss pros and cons of decision modeling using
decision trees vs. a formal deterministic model

Understand the components and structure of discrete
time Markov models

Calculate Markov cycles by hand, using Markov bubble
diagram

Apply methods for Markov cycle correction
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A Simple Disease Process

Suppose we want to model the cost-effectiveness of
alternative strategies to prevent a disease from
occurring.

We start with a healthy population of 25 year olds and
there are three health states people can experience:

�. Remain Healthy

�. Become Sick

�. Death
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A Simple Disease Process

Remaining healthy carries no utility decrement (utility
weight = 1.0 per cycle in healthy state)

Becoming sick carries a 0.25 utility decrement for the
remainder of the person’s life (utility weight = 0.75)

Death carries a utility value of 0.
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A Simple Disease Process

There is no cost associated with remaining healthy.

Becoming sick incurs $1,000 / year in costs.

Becoming sick increases the risk of death by 300%.
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A Simple Disease Process
A country’s health institute is considering five preventive
care strategies that reduce the risk of becoming sick:

Strategy Description Cost

A Standard of Care $25/year

B Additional 4% reduction in risk
of becoming sick

$1,000/year

C 12% reduction in risk $3,100/year

D 8% reduction in risk $1,550/year

E 8% reduction in risk $5,000/year
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Model Option 1: Decision Tree

One option would be to use a decision tree to model the
expected utility and costs associated with each strategy.

Model time horizon: 10 years

The next slide shows the decision tree for outcomes
experienced in the first year.
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Model Option 1: Decision Tree

What limitations do you see?
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Decision tree for two full cycles.
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Strategy A decision tree for 5 cycles.
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Decision Trees
Pros Cons

Simple, rapid & can
provide insights
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Decision Trees
Pros Cons

Simple, rapid & can
provide insights

Easy to describe &
understand
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Decision Trees
Pros Cons

Simple, rapid & can
provide insights

Easy to describe &
understand

Works well with limited
time horizon
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Decision Trees
Pros Cons

Simple, rapid & can
provide insights

Difficult to include clinical
detail

Easy to describe &
understand

Works well with limited
time horizon
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Decision Trees
Pros Cons

Simple, rapid & can
provide insights

Difficult to include clinical
detail

Easy to describe &
understand

Elapse of time is not
readily evident.

Works well with limited
time horizon
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Decision Trees
Pros Cons

Simple, rapid & can
provide insights

Difficult to include clinical
detail

Easy to describe &
understand

Elapse of time is not
readily evident.

Works well with limited
time horizon

Difficult to model longer
(>1 cycle) time horizons
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Decision Trees
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Next Steps

Ideally we want a modeling approach that can
incorporate flexibility and handle the complexities that
make decision trees difficult/unwieldy.
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Markov Models
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Markov Models
Common approach in decision analyses that adds
additional flexibility.

Pros Cons

Can model repeated events
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Markov Models
Common approach in decision analyses that adds
additional flexibility.

Pros Cons

Can model repeated events

Can model more complex
+ longitudinal clinical
events
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Markov Models
Common approach in decision analyses that adds
additional flexibility.

Pros Cons

Can model repeated events

Can model more complex
+ longitudinal clinical
events

Not computationally
intensive; efficient to
model and debug
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Markov Models

The advantages of Markov models derive from their
structure around mutually exclusive disease states.

These disease states represent the possible states or
consequences of strategies or options under
consideration.

Because there are a fixed number of disease states the
population can be in, there is no need to model complex
pathways, as we saw in the decision tree “explosion” a
few slides back.
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Markov Trees
It is also common to pair a Markov model with a decision
tree.1
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Markov Trees
It is also common to pair a Markov model with a decision
tree.1
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Markov Tree
A simple decision tree is implicit in nearly every decision analysis.

30

Back to Website



Markov Tree: Example
Treatment A:
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Markov Tree: Example
Treatment A:
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When choosing a model structure…

“Things should be made as simple as possible, but not
simpler” - Albert Einstein
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Constructing a Markov
Model
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Key characteristics
Allows for health state transitions over time

Individuals can only exist in one state at a time (mutually exclusive health states)

At the beginning or end of each cycle, patients transition across health states via
transition probabilities & individuals stay in health state for entire cycle length

Probability of transitioning depends on the current state (“no memory”); (tunnel
states can account for this potential limitation)

Transition probabilities remain constant over time (apart from embedded
lifetables)

Results report “average” of cohort
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Key characteristics

“CYCLE” = Minimum amount of time that any individual will spend in a state
before possible transition to another state

More on this in the next slides
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Steps

�. Define the decision problem

�. Conceptualize the model

�. Parameterize the model

�. Calculate or define the transition probability matrix

�. Run the model
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1. Define the Decision
Problem
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Step 1: Define the Decision Problem
We defined the decision problem earlier in this lecture, so
we’ll repeat the basic objectives briefly here.
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Step 1: Define the Decision Problem
Goal: model the cost-effectiveness of alternative strategies
to prevent a disease from occurring.

Strategy Description Cost

A Standard of Care $25/year

B Additional 4% reduction in risk
of becoming sick

$1,000/year

C 12% reduction in risk $3,100/year

D 8% reduction in risk $1,550/year

E 8% reduction in risk $5,000/year
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Step 1: Define the Decision Problem
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2. Conceptualize the
Markov Model
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2. Conceptualize the Markov Model
Two major steps:

 2a. Determine health states

 2b. Determine transitions
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Step 2: Conceptualize the Model
 2a. Determine health states

There are three health states people can experience:

�. Remain Healthy

�. Become Sick

�. Death
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Step 2: Conceptualize the Model
 2a. Determine health states

There three health states people can experience:

�. Remain Healthy

�. Become Sick

�. Death

 2b. Determine transitions

Individuals who become sick cannot transition back to
healthy.
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“Bubble Diagram”
State transition (“bubble”) diagrams are useful
visualizations of a Markov model.

Healthy

Sick

Dead
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3. Parameterize the
Model
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3. Parameterize the Model
Basic steps

 3a. Determine basic model parameters

 3b. Curate and define model inputs
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3. Parameterize the Model
Basic steps

 3a. Determine basic model parameters

Define the population (e.g., 25 year old females)

Define the Markov cycle length (e.g., 1-year cycle)

Define the time horizon (e.g., followed until age 100 or
death)

53

Back to Website



3a. Define the Markov Cycle Length

Fundamentally, we’re modeling a continuous time
process (e.g., progression of disease).

A discrete time Markov model “breaks up” time into
“chunks” (i.e., “cycles”).

A consequence is that the model will show us what
fraction start out a cycle in a given state, and what
fraction end up in each state at the end of the cycle.
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3a. Define the Markov cycle length

Suppose we used a one-year cycle for the healthy-sick-
dead model.

Think about the underlying (continuous time) disease
process.

Recall that becoming sick substantially increases the
likelihood of death.

If we’re not careful, what are we (implicitly) assuming can
and can’t happen in a single cycle?
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3a. Define the Markov Cycle Length
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3a. Define the Markov Cycle Length
The challenge of selecting an appropriate cycle length boils down to how we deal
with competing risks.

Healthy

Sick

Dead

Competing risks: individuals can
transition from their current health
state to two or more other health
states.
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3a. Define the Markov Cycle Length
The challenge of selecting an appropriate cycle length boils down to how we deal
with competing risks.

Healthy

Sick

Dead

If we’re not careful, we could
effectively rule out the possibility of
Healthy  Sick Dead within a cycle.

The model would look like a basic
Healthy  Dead transition, but they
took a detour through Sick along the
way!
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3a. Define the Markov Cycle Length
Pros Cons

Can model repeated events Competing risks are a
challenge

Can model more complex + longitudinal clinical
events

Not computationally intensive; efficient to model
and debug
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3a. Define the Markov Cycle Length

It may be tempting to simply shorten the cycle length
(e.g., use 1 day cycle vs. 1 year cycle).

For a 75 year horizon, how many cycles would that be?

27,375!!!

Any possible issues with this?
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3a. Define the Markov Cycle Length

Shortening the cycle creates a computational challenge.

Base case requires 27,375 daily cycles.

Now suppose we want to run 2,000 probabilistic
sensitivity analysis model runs.

We now have 57,750,000 cycle runs to contend with!
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3a. Define the Markov Cycle Length
Pros Cons

Can model repeated events Can only transition once in a given cycle

Can model more complex + longitudinal
clinical events

Shortening the cycle can create
computational challenges.

Not computationally intensive; efficient
to model and debug
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3a. Define the Markov Cycle Length
More challenges …
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3a. Define the Markov Cycle Length
More challenges …

Markov models are “memoryless” – they don’t remember
what happened before the current cycle.

If your risk of transition to a sicker health state
depends on events that happened earlier in time, the
model can’t explicitly account for this.

64

Back to Website



3a. Define the Markov Cycle Length
More challenges …

There are workarounds known as “tunnel states” to get
around this problem, though these are difficult to do and
present their own challenges

We won’t cover them this week but we can provide
references if you want to explore!
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3a. Define the Markov Cycle Length
Pros Cons

Can model repeated events Can only transition once in a given cycle

Can model more complex + longitudinal
clinical events

Shortening the cycle can create
computational challenges.

Not computationally intensive; efficient
to model and debug

Shortening cycle can cause “state
explosion” if tunnel states are used
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3a. Define the Markov Cycle Length

Healthy

Sick

Dead

It’s also advisable to pick a cycle
length that aligns with the
clinical/disease timelines of the
decision problem.

Treatment schedules.

Acute vs. chronic condition.

Another option is to incorporate
“short-run” events that happen early in
the course of a disease/intervention
within the decision tree, then allow the
Markov model to model longer-term
health consequences.
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3. Parameterize the Model
 3b. Curate and define model inputs

 3b.i. Source and define the base case values.

 3b.ii. Source and define sources of uncertainty.
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3. Parameterize the Model
 3b. Curate and define model inputs

Rate of disease onset

Health state utilities and costs

Hazard ratios, odds ratios or relative risks for different
strategies.

… and so on.
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3. Parameterize the Model
We defined many of the underlying parameters earlier in
this lecture, so we’ll repeat them briefly here.
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3. Parameterize the Model

We start with a healthy population of 25 year olds and
follow them until age 100 (or death, if earlier).

Remaining healthy carries no utility decrement (utility
weight= 1.0)

Becoming sick carries a 0.25 utility decrement for the
remainder of the person’s life (utility weight = 0.75)

Death carries a utility weight value of 0.
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3. Parameterize the Model

There is no cost associated with remaining healthy.

Becoming sick incurs $1,000 / year in costs.

Becoming sick increases the risk of death by 300%.
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3. Parameterize the Model
Each strategy has a different cost and impact on the
likelihood of becoming sick.

Strategy Description Cost

A Standard of Care $25/year

B Additional 4% reduction in risk
of becoming sick

$1,000/year

C 12% reduction in risk $3,100/year

D 8% reduction in risk $1,550/year

E 8% reduction in risk $5,000/year
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3. Parameterize the Model

It is critical to follow a formal process for parameterizing your model.

Often, parameters are drawn from the published
literature, and it is important to track the source
(published value, assumption, etc.) for each model
parameter.

For example, the percent risk reduction parameter for
each strategy may come from different clinical trials.

The parameter governing death from background
causes may be derived from mortality data.
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3. Parameterize the Model
It is critical to follow a formal process for parameterizing your model.

Some parameters may just be values (e.g., cost of Strategy A is $25/yr)

Some parameters may be functions of other parameters.

For example, suppose we want to follow a cohort of 25 year olds until age 100
or death, if it occurs earlier.

In that case we have two “fixed” parameters: the starting age, and the
maximum age.

We can use these two parameters to infer the total number of cycles we need to
run.
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3. Parameterize the Model

It is critical to follow a formal process for parameterizing your model.

Parameters also have various “flavors”:

�. Probabilities

�. Rates

�. Hazard ratios

�. Costs

�. Utilities

�. etc.
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3. Parameterize the Model

It is critical to follow a formal process for parameterizing your model.

All of the above highlight the importance of adopting a
formal process for naming and tracking the value, source,
and uncertainty distribution of all model parameters in
one place.

We recommend a structured approach based on
parameter naming conventions and parameter tables.

77

Back to Website



3. Parameterize the Model
Naming conventions:

type prefix

Probability p_

Rate r_

Matrix m_

Cost c_

Utility u_

Hazard Ratio hr_
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Parameter Table
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param column is the short name of the parameter
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base_case is the parameter value for the base case.
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formula defines model parameter formulas for parameters that are functions of other
model parameters.
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description provides a text description of the parameter.
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notes is an optional column where you add additional notes or context for the
parameter.
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distribution specifies the uncertainty distribution for the parameter. It is used for
probabilistic sensitivity analyses, which we cover in our intermediate (week-long)
workshop.
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source provides the source for the parameter. It could be a published research
article, an assumption, or just simply an unsourced modeling parameter (e.g., the
starting age of the modeled cohort).
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4. Calculate or define
the transition
probability matrix
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Defining the Transition Probability Matrix

The transition probability matrix is a square matrix that
defines the probability of transitioning from one health
state to another health state in a single time step.

Constructing the matrix is a fairly technical, but fairly
straightforward process.

We will skip over this process for now, but come back
to it later today!
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Transition Probability Matrix

Healthy 0.856

Sick

0.138

Dead

0.007

0.982

0.018

1.0

Healthy Sick Dead

Healthy 0.856 0.138 0.007

Sick 0 0.982 0.018

Dead 0 0 1
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5. Run the Model
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Executing the model requires two inputs
Health State Occupancy at Beginning of Cycle

Transition Probability Matrix
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Health State Occupancy at
Beginning of Cycle

Transition Probability
Matrix
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Health State
Occupancy at
Beginning of Cycle

Transition
Probability
Matrix

s =
 H S D
 1 0 0

P =
      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000
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Health State Occupancy
at Beginning of Cycle

Transition
Probability
Matrix

Health State
Occupancy at End of
Cycle

s =
 H S D
 1 0 0

P =
      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

s ⋅ P =
     H     S     D
 0.856 0.138 0.007
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Health State Occupancy
at Beginning of Cycle

Transition
Probability
Matrix

Health State
Occupancy at End of
Cycle

s =
 H S D
 1 0 0

P =
      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

s ⋅ P =
     H     S     D
 0.856 0.138 0.007
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Health State Occupancy
at Beginning of Cycle

Transition
Probability
Matrix

Health State
Occupancy at End of
Cycle

s =
 H S D
 1 0 0

     H     S     D
 0.856 0.138 0.007

P =
      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

s ⋅ P =
     H     S     D
 0.856 0.138 0.007

     H     S     D
 0.733 0.254 0.015
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Health State Occupancy
at Beginning of Cycle

Transition
Probability
Matrix

Health State
Occupancy at End of
Cycle

s =
 H S D
 1 0 0

     H     S     D
 0.856 0.138 0.007

     H     S     D
 0.733 0.254 0.015

P =
      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000
      H     S     D
H 0.856 0.138 0.007
S 0.000 0.982 0.018
D 0.000 0.000 1.000

s ⋅ P =
     H     S     D
 0.856 0.138 0.007

     H     S     D
 0.733 0.254 0.015

     H    S     D
 0.627 0.35 0.025
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Health State Occupancy at End of Cycle
     H     S     D
 0.856 0.138 0.007

       H       S        D
 0.73274 0.25364 0.015476

       H      S        D
 0.62722 0.3502 0.025171

100

Back to Website



Markov Trace
Health State Occupancy Over Ten Cycles
 cycle       H       S        D
     0 1.00000 0.00000 0.000000
     1 0.85600 0.13800 0.007000
     2 0.73274 0.25364 0.015476
     3 0.62722 0.35020 0.025171
     4 0.53690 0.43045 0.035865
     5 0.45959 0.49679 0.047371
     6 0.39341 0.55127 0.059531
     7 0.33676 0.59564 0.072207
     8 0.28826 0.63139 0.085286
     9 0.24675 0.65981 0.098669
    10 0.21122 0.68198 0.112273
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Calculate cycles by
hand
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In-class example
A new drug was developed for cancer patients in remission to decrease their
chance of relapse

This drug is $10,000 per year (2022 USD)

Research question: Is the new drug cost-effective compared to the current
standard of care?

Let’s say we want to model this over a 4-year time horizon
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In-class example

Standard of Care New Drug

Healthy to Stage 1 5%

Healthy to Stage 2 2%

Healthy to Stage 3 1%

Stage 1 to Stage 2 10%

Stage 1 to Remission 25%

Stage 2 to Stage 1 5%

Stage 2 to Stage 3 15%

Stage 2 to Remission 20%

Stage 3 to Stage 2 5%

Stage 3 to Death 45%

Remission to Stage 1 10% 2%

Remission to Stage 2 5% 1%
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In-class example
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In-class example
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In-class example
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In-class example
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In-class example
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In-class example
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Calculating Outcomes
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An example Markov Trace (75 year
horizon)

Cycle Healthy Sick Dead

0 1.000 0.000 0.000

1 0.856 0.138 0.007

2 0.732 0.253 0.015

3 0.626 0.349 0.025

4 0.536 0.429 0.035

5 0.458 0.495 0.046

… … … …

75 (End) 0 0.282 0.718
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Markov Traces

Often we are modeling several competing strategies.

Each strategy has its own transition probability matrix.

Therefore, each strategy will have it’s own Markov trace.
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Calculating Outcomes

With our markov traces complete, we can calculate
expected outcomes (e.g., costs, QALYs, DALYs, etc.).

Much like we did with decision trees, we need to define
“payoffs” for each health state.
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Defining Payoffs

Cost outcomes: Cost of being healthy, sick, dead
(including any additional costs of treatment/intervention,
if applicable).

QALY outcomes: Utility weight of being healthy (usually
1.0), sick, dead (usually 0.0).

DALY outcomes: Disability weights of being sick (YLD)
and remaining life expectancy based on reference life
table (YLL)
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Defining Payoffs

We can calculate the total payoff for each cycle by
multiplying the number or fraction of the cohort in each
health state by its payoff value, and adding them
together.

Example Markov Trace (two cycles):

Cycle Healthy Sick Dead

0 1.000 0.000 0.000

1 0.856 0.138 0.007
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Example: Life Years

We’ll build our example using a simple outcome:
expected life years under a given strategy.

Payoffs:

Healthy: 1.0

Sick: 1.0 [they’re still alive!]

Dead: 0.0
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Example: Life Years

Cycle Healthy Sick Dead LY

0 1.000 0.000 0.000

1 0.856 0.138 0.007

To get the total “payoff” for a given cycle, we multiply the
fraction of the cohort in a given health state by the payoff
associated with that health state.

Do this for each health state, and add them together to
get the total.
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Example: Life Years
What is the LY “payoff” for Cycle 0?

Cycle Healthy Sick Dead LY

0 1.000 0.000 0.000

1 0.856 0.138 0.007
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Example: Life Years
What is the LY “payoff” for Cycle 0?

Cycle Healthy Sick Dead LY

0 1.000 0.000 0.000 1.0 = 1.0
* 1.0 +
0.0 * 1.0
+ 0.0 *
0.0

1 0.856 0.138 0.007
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Example: Life Years
What is the LY “payoff” for Cycle 1?

Cycle Healthy Sick Dead LY

0 1.000 0.000 0.000 1.0

1 0.856 0.138 0.007 0.994 = 0.856
* 1.0 + 0.138 *
1.0 + 0.007 *
0.0

… and so on.
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Example: Life Years
Cycle Healthy Sick Dead LY

0 1.000 0.000 0.000 1

1 0.856 0.138 0.007 0.993

2 0.732 0.253 0.015 0.985

3 0.626 0.349 0.025 0.975

4 0.536 0.429 0.035 0.965

5 0.458 0.495 0.046 0.954

… … … …

75 (End) 0 0.282 0.718 0.282
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Example: Costs

Now suppose we want to calculate costs.

Payoffs:

Healthy: $0

Sick: $1,000

Dead: $0
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Example: Costs
What is the Cost “payoff” for Cycle 0?

Cycle Healthy Sick Dead Cost

0 1.000 0.000 0.000

1 0.856 0.138 0.007
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Example: Costs
What is the Cost “payoff” for Cycle 0?

Cycle Healthy Sick Dead Cost

0 1.000 0.000 0.000 0 = 1.00 *
0 + 0.0 *
1000 + 0.0
* 0

1 0.856 0.138 0.007
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Example: Costs
What is the cost “payoff” for Cycle 1?

Cycle Healthy Sick Dead Cost

0 1.000 0.000 0.000 0

1 0.856 0.138 0.007 138 = 0.856*0+0.138*1000+0.007*0

… and so on.
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Other Outcomes

We can repeat a similar process for health outcomes
(e.g., QALYs, YLDs) by multiplying the “payoff” (e.g., utility
weight, disability weight) for a given health state by the
fraction of the cohort in that health state in the cycle.
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Calculating Total
Expected Outcomes
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Total Outcomes
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Total Life Years
Let’s look at the Markov trace and cycle outcomes for the
Life Year outcome.

Cycle Healthy Sick Dead LY (single cycle)

0 1.000 0.000 0.000 1

1 0.856 0.138 0.007 0.993

2 0.732 0.253 0.015 0.985

3 0.626 0.349 0.025 0.975

4 0.536 0.429 0.035 0.965

5 0.458 0.495 0.046 0.954

… … … …

75 (End) 0 0.282 0.718 0.282

133

Back to Website



Life years
We can create a new column that accumulates life years
over each cycle.

Cycle Healthy Sick Dead LY (single cycle) LY (cumulative)

0 1.000 0.000 0.000 1 1

1 0.856 0.138 0.007 0.993 1 + 0.993 = 1.993

2 0.732 0.253 0.015 0.985

3 0.626 0.349 0.025 0.975

4 0.536 0.429 0.035 0.965

5 0.458 0.495 0.046 0.954

… … … … …

75 (End) 0 0.282 0.718 0.282
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Life years
Cycle Healthy Sick Dead LY (single

cycle)
LY
(cumulative)

0 1.000 0.000 0.000 1 1

1 0.856 0.138 0.007 0.993 1.993

2 0.732 0.253 0.015 0.985 1 + 0.993 +
0.985 =
2.978

3 0.626 0.349 0.025 0.975

4 0.536 0.429 0.035 0.965

5 0.458 0.495 0.046 0.954

… … … … …

75 (End) 0 0.282 0.718 0.282
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Life years

Cycle Healthy Sick Dead LY (single cycle) LY (cumulative)

0 1.000 0.000 0.000 1 1

1 0.856 0.138 0.007 0.993 1.993

2 0.732 0.253 0.015 0.985 2.978

3 0.626 0.349 0.025 0.975 3.954

4 0.536 0.429 0.035 0.965 4.919

5 0.458 0.495 0.046 0.954 5.872

… … … … … …

75 (End) 0 0.282 0.718 0.282 44.825

The cumulative LYs for an individual starting in the Healthy state is 44.825

Note that this is within a 75 years time horizon
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Total Outcomes

We can do a similar exercise to get total costs, total
QALYs, total DALYs, etc.

However, it’s not that simple. There are some extra
complications we have to deal with.

Discounting

Cycle correction
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Cycle correction
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The problem

In real life, events could occur at any points in a given
cycle, but a Markov model assumes all events occur
either at the beginning or end of each cycle

Time is continuous, so are survival/event-free survival
curves

When we discretize time by using a fixed cycle length, we
can make two assumptions

Suppose this is a simple Well  Dead process→
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The problem
Assuming death happens at the end of
cycle (A)

Overestimates state membership in Well

Assuming death happens at the start of
cycle (B)

Underestimates state membership in
Well

Source
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The problem
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Half-cycle correction

Source
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Half-cycle correction

Source
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Half-cycle correction

Multiply the outcomes by 1/2 in the first and last cycle.

Shifting the computed, discrete state membership curve to the left by 1/2 cycle.

Essentially assuming that events happen in the middle of cycle

Source
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Half-cycle correction
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Apply cycle correction
methods to our markov
trace…
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Half-cycle correction
Multiply the outcomes by 1/2 in the first and last cycle.

Cycle Healthy Sick Dead LY (single cycle,
adjusted)

LY (cumulative)

0 1.000 0.000 0.000 1*0.5 0.5

1 0.856 0.138 0.007 0.993 0.5 + 0.993 =
1.493

2 0.732 0.253 0.015 0.985 2.478

3 0.626 0.349 0.025 0.975 3.454

4 0.536 0.429 0.035 0.965 4.419

5 0.458 0.495 0.046 0.954 5.372

… … … … … …

75 (End) 0 0.282 0.718 0.282 *0.5 44.184

This number is smaller than our original estimate without half-cycle correction (44.825!)
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Summary

Once we have total (discounted, half-cycle corrected)
outcomes for each strategy, we can turn to conducting
incremental cost-effectiveness analysis.

We covered these methods yesterday!
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Markov Models
Pros Cons

Can model repeated events Can only transition once in
a given cycle

Can model more complex
+ longitudinal clinical
events

Shortening the cycle can
create computational
challenges.

Not computationally
intensive; efficient to
model and debug

Shortening cycle can cause
“state explosion” if tunnel
states are used
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Next up: Markov Case
Study
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