
9. Systematic
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Understanding Model
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Learning Objectives
and Outline
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Learning Objectives

�. Discuss common sources of uncertainty in decision
models.

�. Explain how to draw parameter values from an
uncertainty distribution.

�. Understand inputs and outputs of a PSA

�. Characterize decision uncertainty using cost-
effectiveness acceptability curves and frontiers.

4

Back to Website



Lecture Outline

�. Why Do We Study Uncertainty in a Decision Model?

�. How Do We Conduct a Probabilistic Sensitivity Analysis?

�. How Do We Summarize PSA Results?
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1. Why Do We Study
Uncertainty in a
Decision Model?
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Two Fundamental Questions of Decision
Analysis

�. Which strategies are cost-effective given constraints and
values and based on current evidence?
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Two Fundamental Questions of Decision
Analysis

�. Which strategies are cost-effective given constraints and
values and based on current evidence?

Model outcomes (e.g., ICERs) will be sensitive to all
sources of uncertainty.

Key Question: Does this sensitivity change decisions?
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Two Fundamental Questions of Decision
Analysis

�. Should we invest more resources to reduce uncertainty in
our decisions?
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Role of Probabilistic Sensitivity Analysis in
a Decision Model

Quantify the degree of decision uncertainty in our model.

Is it worth pursuing additional research to reduce
uncertainty?
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Different Types of Uncertainty
�. First-order: Stochastic uncertainty from simulating individual patients.

Each patient will have a different “experience” in the model, which will create
variation in model outputs (e.g., total costs, QALYS) both within the model and
across different model runs.

Not relevant for Markov cohort models because those models are deterministic—
they capture the average experience of a population, and do not simulate
individual patient trajectories within that population.

Relevant source of uncertainty for discrete event simulation and microsimulation
models.

Can often be minimized via modeling choices (i.e., simulate a lot of patients!)
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Different Types of Uncertainty
�. First-order: Stochastic uncertainty from simulating individual patients.

�. Second-order: Uncertainty in the “true” value of underlying parameters.

Model parameters are often estimated with uncertainty (e.g., 95% confidence
interval)

You may have assumed or calibrated parameters not rooted in a published
research study; there is uncertainty involved in these processes, too!
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Different Types of Uncertainty
�. First-order: Stochastic uncertainty from simulating individual patients.

�. Second-order: Uncertainty in the “true” value of underlying parameters.

�. Model structure uncertainty: Different choices on how to construct the structure of
your model will result in different outcome estimates.

Different choices for cycle correction (e.g., half-cycle, Simpson’s 1/3, etc.)

Different choices for how to construct transition probability matrices (e.g., rate-to-
probability conversion formulas vs. embedding via Matrix exponentiation)
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Heterogeneity vs. Uncertainty

Uncertainty: variation in model outputs due to stochastic
experiences of patients, sensitivity to input parameter
values, etc.

Heterogeneity: variation in model outputs due to
differences in patient characteristics.
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Heterogeneity vs. Uncertainty

Source: Briggs et al., “Model Parameter Estimation and
Uncertainty: A Report of the ISPOR-SMDM Modeling Good
Research Practices Task Force-6”
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When Does Uncertainty Matter?
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When Does Uncertainty Matter?
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When Does Uncertainty Matter?
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When Does Uncertainty Matter?
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When Does Uncertainty Matter?
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When Does Uncertainty Matter?
In this example, model outputs are sensitive to uncertainty,
but decisions are not.

22

Back to Website



Back to Website



When Does Uncertainty Matter?
In this example, model outputs are sensitive to uncertainty,
but decisions are not.
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When Does Uncertainty Matter?
Both model outputs and decisions are sensitive to
uncertainty.
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When Does Uncertainty Matter?
Both model outputs and decisions are sensitive to
uncertainty.
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Markov Cohort Models
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DES and Microsimulation
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Probabilistic Sensitivity Analysis
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2. How Do We Conduct
Probabilistic Sensitivity
Analyses?
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Idea

Run the model many times, each time drawing a given
parameter value from its uncertainty distribution.

Collect the parameter values and model outputs (e.g.,
total costs and QALYs) in a probabilistic sensitivity
analysis (PSA) dataset.

Analyze the PSA results to construct uncertainty
estimates for ICERs, NMB/NHB, etc.

PSA results can also be used for value of information that
quantify decision uncertainty and the value of future
research to reduce uncertainty.
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How Do We Draw PSA Values?

Central limit tells us that distribution for many estimated
parameters is normal.

However, often we do not rely on a single parameter
estimate, but rather on a range of estimates from the
literature.

In any PSA, we want to specify parameter uncertainty in
such a way as to capture the overall level of uncertainty
in model parameters.
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How Do We Draw PSA Values?
Parameter Type Distribution

Probability beta

Rate gamma

Utility weight beta

Right skew (e.g., cost) gamma, lognormal

Relative risks or hazard ratios lognormal

Odds Ratio logistic
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Constructing a PSA Sample
For a given iteration 

�. Draw separate PSA values from the uncertainty
distributions in your model.

�. Run the model and calculate model outputs (e.g., total
costs and QALYs for each strategy).

�. Record the PSA parameter values and the outcome
results in a table.

�. Repeat 1-3 many times.

j
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Common PSA Distributions in Amua
Parameter Type Distribution Amua

Probability beta Beta(shape1,shape2,~)

Rate gamma Gamma(shape, scale, ~)

Utility weight beta Beta(shape1,shape2,~)

Right skew (e.g.,
cost)

gamma,
lognormal

LogNorm(shape,scale,~)

Relative risks or
hazard ratios

lognormal LogNorm(shape,scale,~)

Odds Ratio logistic Logistic(location, scale)
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Exmample: Uncertainty in Utility Weight

Base case value: 0.95

Sample from Beta(95,5,~)
Alternatively, sample from Beta(950,50,~)
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Exmample: Uncertainty in Utility Weight
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Interactive Amua
Session
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3. How Do We
Summarize PSA
Results?
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How Do We Summarize PSA Results?

Plot costs and QALYs of
each iteration to show
degree of variation in
estimates.

Figure plots values at each
iteration, the average
across 1,000 iterations
(large points) and ellipses
that capture ~95% of
points.
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Cost Effectiveness Acceptability Curves

CEACs summarize the degree of uncertainty as captured
by our PSA.

CEAC represents the (Bayesian) probability of each
option being cost-effective at different levels of the cost-

effectiveness threshold .λ

Source
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Cost Effectiveness Acceptability Curves
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Constructing the CEAC

�. Define a WTP value. λ = 50000
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Constructing the CEAC

�. Use the PSA sample to calculate the Net Monetary
Benefit (NMB) and/or the Net Health Benefit (NHB) of
each strategy.

Net Monetary Benefit

TOTQALY - $$

TOTQALY ∗ λ − TOTCOST

NetHealthBenefit
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PSA Sample
PSA_ID totcost_trtA totcost_trtB totcost_trtC totcost_trtD totcost_t

1 19619 25588 37065 23998 407

2 11777 17379 36873 19454 455

3 13292 19269 33790 19886 419

4 14652 19102 25154 19246 339

5 13287 15913 26998 18688 391

6 14959 17506 32929 20603 493
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Net Monetary Benefit
Note: Values shown are for a single value of lambda

(50,000/QALY)

PSA_ID NMB_A NMB_B NMB_C NMB_D NMB_E

1 907239 905168 899245 908648 891849

2 838749 838035 822957 837314 811200

3 849279 848687 841748 853212 831165

4 791727 787466 793733 793440 778708

5 783630 785914 780057 785112 764647

6 785829 786922 781411 788536 759811
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Identify the Optimal Strategy

�. For each iteration, determine which strategy maximizes
NMB/NHB.

This is the optimal strategy for a given  value.λ
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Identify the Optimal Strategy
PSA_ID NMB_A NMB_B NMB_C NMB_D NMB_E

1 907239 905168 899245 908648 891849

2 838749 838035 822957 837314 811200

3 849279 848687 841748 853212 831165

4 791727 787466 793733 793440 778708

5 783630 785914 780057 785112 764647

6 785829 786922 781411 788536 759811
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Identify the Optimal Strategy
PSA_ID MAX_IS_A MAX_IS_B MAX_IS_C MAX_IS_D MAX_IS_E

1 0 0 0 1 0

2 1 0 0 0 0

3 0 0 0 1 0

4 0 0 1 0 0

5 0 1 0 0 0

6 0 0 0 1 0
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How Often is the Stratgy the Optimal?

The average of this binary indicator across all PSA model
runs is the fraction of the time each strategy is optimal

for a given value of .λ
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How Often is the Strategy the Optimal?
lambda MAX_IS_A MAX_IS_B MAX_IS_C MAX_IS_D MAX_IS_E

50000 0.1667 0.1667 0.1667 0.5 0
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How Often is the Strategy the Optimal?

Now repeat this exercise across a range of values for .λ
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How Often is the Strategy the Optimal?
lambda MAX_IS_A MAX_IS_B MAX_IS_C MAX_IS_D MAX_IS_E

20000 1.0000 0.0000 0.0000 0.0000 0

40000 0.1667 0.1667 0.0000 0.6667 0

50000 0.1667 0.1667 0.1667 0.5000 0

60000 0.0000 0.3333 0.1667 0.5000 0

80000 0.0000 0.0000 0.1667 0.8333 0

100000 0.0000 0.0000 0.1667 0.8333 0

120000 0.0000 0.0000 0.3333 0.6667 0

140000 0.0000 0.0000 0.5000 0.5000 0

160000 0.0000 0.0000 0.5000 0.5000 0

180000 0.0000 0.0000 0.6667 0.3333 0

200000 0.0000 0.0000 0.6667 0.3333 0
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How Often is the Strategy the Optimal?

We can now plot these data:

x-axis: .

y-axis: Fraction/percent of the time each strategy is
optimal.

This is the Cost-Effectiveness Acceptability Curve

λ
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Cost Effectiveness Acceptability Curve
(CEAC)
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Interactive Amua
Session
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What Does the CEAC Tell Us?

Fenwick et al. (2001) the probability of being cost-
effective cannot be used to determine the optimal
option.

If the objective is to maximize health gain, decisions
should be made based on expected net benefit,
regardless of the uncertainty associated with the
decision.
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Cost Effectiveness Acceptability Frontier

Layer you can add to the CEAC.

Shows the probability that the optimal option is cost-

effective at different  values.

The CEAF is not necessarily the top “envelope” or region
of the CEAC!

λ
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Cost Effectiveness Acceptability Frontier
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Cost Effectiveness Acceptability Frontier

�. Determine average costs and QALY for each strategy
across all PSA iterations.

�. Calculate NMB/NHB based on these averages.

�. Determine optimal strategy based on the strategy that
maximizes NMB/NHB.

63

Back to Website



Cost Effectiveness Acceptability Frontier

�. Repeat for a range of values of .λ

�. For each strategy find the range of values of  for which
that strategy is optimal.

λ

This determines the “switch points” of the CEAF.
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Cost Effectiveness Acceptability Frontier

�. The lowest value of  for which a given strategy is

optimal is  ICER for that strategy.

λ

≈

�. The highest value of  for which a given strategy is
optimal is the ICER for the next most costly option.

λ
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Cost Effectiveness Acceptability Frontier
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Expected Value of Perfect Information
Recall the two questions from the beginning of this talk:

�. Which strategies are cost-effective given constraints and
values and based on current evidence?

�. Should we invest more resources to reduce uncertainty in
our decisions?
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Expected Value of Perfect Information

CEAC and CEAF provide information on the degree to
which uncertainty informs question 1.

These plots can help give us a sense of whether more
research to reduce uncertainty may be valuable
(Question 2).

Value of Information analyses provide a more concrete
answer to Question 2.
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Expected Value of Perfect Information
We will not cover VOI methods in
detail here, but short courses are
available.

Figure shows an instance where model
is sensitive to uncertainty, but
decisions are not.

It’s not really worth pursuing additional
research because we make the same
decision regardless of the parameter
values.
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Expected Value of Perfect Information
If decisions are sensitive to
uncertainty, then the value of
information is high.

It may be worth pursuing additional
research to reduce model parameter
uncertainty.
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Expected Value of Perfect Information

You can use VOI methods with your PSA sample to rank-
order parameters in terms of their importance in
informing decision uncertainty.

Next slides briefly show you how to construct one VOI
measure: the expected value of perfect information.
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Expected Value of Perfect Information

Idea: What is the value of reducing all uncertainty in the
model?

Provides a rough sense of whether additional research
should be pursued.

A related concept, the expected value of partial perfect
information, can be constructed to tell us which
parameters (or sets of parameters) we should focus on.
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Expected Value of Perfect Information

The “ingredients” for calculating the EVPI for a given 
value are all in the CEAC and CEAF inputs.

λ
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Expected Value of Perfect Information

�. Determine the overall optimal strategy based on NMB as
determined by average costs and QALYs across all PSA
model runs.

Call this strategy  (e.g., )s∗ s =∗ D

NMB for this strategy is .(s )NMB ∗
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Expected Value of Perfect Information

�. In each PSA iteration, find the optimal strategy based on
the NMB for each strategy in that particular iteration.

Call this strategy  (e.g., )s  m s  =m B

NMB for this strategy is .NMB  (s  )m m
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Expected Value of Perfect Information

Now let’s think about the economic consequences of

 and (s )NMB ∗ NMB  (s  )m m
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Expected Value of Perfect Information

On average, we would select strategy  because it
results in the highest expected health gain (i.e., it

maximizes ).

But what if that decision is wrong?

s∗

(s )NMB ∗
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Expected Value of Perfect Information

The difference between  and 
for any PSA iteration provides an estimate of the
opportunity cost of making the wrong decision.

If , then .

There is no opportunity cost of making the wrong
decision!

NMB  (s  )m m (s )NMB ∗

s  =m s∗ s  −m s =∗ 0
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Expected Value of Perfect Information

The difference between  and 
for any PSA iteration provides an estimate of the
opportunity cost of making the wrong decision.

If , then .

There is an opportunity cost to making the wrong
decision.

NMB  (s  )m m (s )NMB ∗

s  >m s∗ s  −m s >∗ 0
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Expected Value of Perfect Information

The average value of  in our PSA sample is the
expected value of perfect information (EVPI)

It summarizes the degree to which there is an oportunity
cost to making the wrong decision in our model.

s  −m s∗
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Expected Value of Perfect Information

Just as we did with the CEAC and CEAF, you can

calculate an EVPI value for various  and construct a
EVPI curve.

λ
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Expected Value of Perfect Information
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Expected Value of Perfect Information

At =$100,000/QALY,
there is high value of
information.

Our decision to implement
one strategy over another
is sensitive to uncertainty
in our model.

λ
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Expected Value of Perfect Information

Note that our ICER for
strategy C is very close to
$100,000.

At a decision threshold of

 = $100,000/QALY,
different values for model
parameters could result in

adoption (i.e., ICER < ) or
nonadoption of strategy C.

Strategy Cost Effect ICER

A 16454 17.332 NA

D 24504 17.491 50478

C 33443 17.580 101292

B 21457 17.409 NA

E 43332 17.491 NA
λ

λ
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Expected Value of Perfect Information

At =$10,000/QALY, there
is low value of information.

Our decision to implement
one strategy over another
is not sensitive to
uncertainty in our model.

λ
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Interactive Amua
Session

86

Back to Website


