
Structuring a Markov
Model
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Learning Objectives
and Outline
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Learning Objectives

Understand differences between rates and probabilities,
hazard rates, relative risks, and other relevant model
inputs.

Understand rate-to-probability conversion formulas and
transition probability embedding.

Explain how to embed a transition probability matrix with
a defined timestep.

Explore age-, time- and country/region-specific
adjustments to a Markov model.
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Outline
�. Rates, probabilities, and other model inputs.

�. Constructing the transition probability matrix.

�. Model dynamics

Non-stationary rates: mortality and other time/age-varying parameters.

Tunnel states and other disease-specific transition dynamics
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Goal
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What Never Happens
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Problem

Need transition probabilities but literature-based
parameters are reported as:

�. Rates

�. Hazard ratios

�. Odds ratios

�. Relative risks

�. Transition probabilities (rare!)
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How can we deal with
this?
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Solution

Need “common ground” where we can combine and
transform different model inputs.

This “common ground” is often found in a transition rate
matrix.
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Solution
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Solution
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Solution
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Solution
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Transition Rate Matrix

The central “hub” of a Markov model.

Straightforward to convert rate matrix into a transition
probability matrix.

Can be used to change the cycle length.

Facilitates modeling using alternative techniques:

Continuous time Markov

Discrete event simulation
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Four-Step Process

�. Use data inputs/published literature to define a rate
matrix .R

�. Make strategy-specific adjustments to  as needed.R
�. “Embed” the transition probability matrix using the rate

matrix

�. Make further overall or strategy-specific adjustments to
 as needed.P
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What is the difference
between a rate and a
probability?
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Rates vs. Probabilities

Rate: number of occurrences of an event per unit of time.

Probability: Liklihood that an event will occur for an in
individual over a defined time period.

Major difference is in denominator: rates take into
account time at risk while probabilities do not.
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Rates vs. Probabilities
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Rates

Number of events divided by the total time at risk
experienced by all people followed.

Ranges from 0 to .∞
#events in time period

Total time period experienced by all subjects followed
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Rates
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Probabilities
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Rates vs. Probabilities: Example1

Suppose a study followed 100 people with congestive
heart failure for 4 years.

At the end of 4 years, 40 had died.

The probability of death over 4 years is .40/100 = 0.40

27

Back to Website



Rates vs. Probabilities: Example1

A rate takes into acccount the time each person was at
risk.

The 60 who survived were at risk the entire 4 years and
contributed  years at risk.60 × 4 = 240
Once a person dies, he/she is no longer at risk.
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Rates vs. Probabilities: Example1

When a study does not report time at risk, the
conventional assumption is that the events were spread
evenly over the time period.

Using this assumption, the average time at risk for the
40 who died was 2 years, adding 40 × 2 = 80 years at
risk.
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Rates vs. Probabilities: Example1

Total time at risk for the cohort of 100 people is 320
person-years (240+80).

Thus, the rate of death from CHF is 40/320 = 0.125
deaths per person-year.

Let’s now construct a rate matrix with three states: CHF,
Death from CHF, and Death from other causes.
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Rates vs. Probabilities: Example
CHF D_CHF D_OTH

CHF 0 0 0

D_CHF 0 0 0

D_OTH 0 0 0
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Rates vs. Probabilities: Example

0.125 per person year is the rate we’d enter into our rate
matrix.

We could also think of a separate death rate from
background causes (e.g., 0.006 per person-year).1
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Rates vs. Probabilities: Example
CHF D_CHF D_OTH

CHF 0 0.125 0.006

D_CHF 0 0.000 0.000

D_OTH 0 0.000 0.000
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Rates vs. Probabilities: Example

CHF Death_CHF Death_Other

CHF -0.131 0.125 0.006

Death_CHF 0 0.000 0.000

Death_Other 0 0.000 0.000

The diagonal elements in a rate matrix
are just the negative sum of the off-
diagonal elements.

In this example, the diagonal value for
the 1st row would be -0.131 = -
(0.125+0.006)

We can leave all other rate matrix
values at 0 because the rate of
progression from death to other states
is zero.
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Summary: Rates vs. Probabilities
Statistic Evaluates Range Applicable

Domain

Rate 0 to Rate matrix

Probability/risk 0-1 Probability
matrix

#events in time period
Total time period experienced by all subjects followed

∞

#events in time period
#people followed for time period
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1. Place rates in a rate matrix .R
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1. Place rates in a rate matrix .

“Natural History” (i.e., “do nothing”) rate matrix:

CHF Death_CHF Death_Other

CHF -0.131 0.125 0.006

Death_CHF 0.000 0.000 0.000

Death_Other 0.000 0.000 0.000

R
Country/region-specific background
mortality rate (0.006)

Disease mortality rates from existing
population-based epidemiological
study. (e.g., 0.125 = 40 cases per 320
person-years)

Diagonal value that is the negative
sum of the off-diagonal values in each
row (-0.131).
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1. Place rates in a rate matrix .R
What we have just done is contruct a rate matrix for a
“natural history” model of the disease (CHF).

This is a version of the model in which we allow the
disease process to play out naturally, with no further
intervention.

Sometimes called a “do nothing” strategy.
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1. Place rates in a rate matrix .R
The “natural history” model is useful because it can help
us verify that the model matches what we see in the “real
world.”

The “natural history” model also can be used to calibrate
transition rates to different countries/contexts.

For example, we could recalibrate the model so the CHF
mortality transition rate matches our country-specific
data.
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1. Place rates in a rate matrix .R
Alternatively, suppose we “borrow” a model developed in
another country/context.

That model will be based on underlying rates specific to
that context.

The underlying rate matrix can be used to “swap in”
transition rates that apply to our country/context.

Example: change the background mortality rate to
match you country’s.
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2. Make adjustments to  as needed.R
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2. Make adjustments to  as needed.
“Natural History” rate matrix

CHF Death_CHF Death_Other

CHF -0.131 0.125 0.006

Death_CHF 0.000 0.000 0.000

Death_Other 0.000 0.000 0.000

R
Suppose that a new strategy can
reduces the risk of CHF mortality by
20% (i.e., hazard ratio = 0.8).

We can simply apply this hazard ratio
directly to construct a rate matrix for
strategy A.

For the Strategy A rate matrix, the rate
of CHF death is 0.8 ∗ 0.125 = 0.1
Make sure that the diagonal element is
adjusted to account for this change!
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2. Make adjustments to  as needed.
Suppose that a new strategy can
reduces the risk of CHF mortality by
20% (i.e., hazard ratio = 0.8).

We can simply apply this hazard ratio
directly to construct a rate matrix for
strategy A.

For the Strategy A rate matrix, the rate
of CHF death is 

Make sure that the diagonal element is
adjusted to account for this change!

“Natural History” rate matrix

CHF Death_CHF Death_Other

CHF -0.131 0.125 0.006

Death_CHF 0.000 0.000 0.000

Death_Other 0.000 0.000 0.000

“Strategy A” rate matrix

CHF Death_CHF Death_Other

CHF -0.106 0.1 0.006

Death_CHF 0 0 0.000

Death_Other 0 0 0.000

R

0.8 ∗ 0.125 = 0.1
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2. Make adjustments to  as needed.
“Natural History” rate matrix (one-year timestep)

CHF Death_CHF Death_Other

CHF -0.131 0.125 0.006

Death_CHF 0.000 0.000 0.000

Death_Other 0.000 0.000 0.000

R
Another adjustment we could make at
this stage is the time cycle length.

Suppose our rate matrix is defined in
terms of a one-year time cycle, but we
want to convert to a monthly cycle.

In that event, we’d simply divide each
rate in the matrix by 12, and the
resulting matrix would be for a monthly
timestep.
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2. Make adjustments to  as needed.
Another adjustment we could make at
this stage is the time cycle length.

Suppose our rate matrix is defined in
terms of a one-year time cycle, but we
want to convert to a monthly cycle.

In that event, we’d simply divide each
rate in the matrix by 12, and the
resulting matrix would be for a monthly
timestep.

“Natural History” rate matrix (one-year timestep)

CHF Death_CHF Death_Other

CHF -0.131 0.125 0.006

Death_CHF 0.000 0.000 0.000

Death_Other 0.000 0.000 0.000

“Natural History” rate matrix (one-month timestep)

CHF Death_CHF Death_Other

CHF -0.0109 0.0104 5e-04

Death_CHF 0 0 0

Death_Other 0 0 0

R
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3. “Embed” the transition probability
matrix using the rate matrix
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3. “Embed” the transition probability
matrix using the rate matrix

Our next step is to convert the transition rate matrix into
a transition probability matrix.

Common practice is to use rate-to-probability conversion
formulas
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3. “Embed” the transition probability
matrix using the rate matrix

Our next step is to convert the transition rate matrix into
a transition probability matrix.

Common practice is to use rate-to-probability conversion
formulas

where  is the rate and  is the time-step.

p = 1 − exp(−rt)

r t

48

Back to Website



3. “Embed” the transition probability
matrix using the rate matrix

This formula works fine when there is only one possible
state an individual can transition to.

The formula will not calculate the correct transition
probability if there are two or more states someone can
transition to.

49

Back to Website



3. “Embed” the transition probability
matrix using the rate matrix

We will cover two approaches for constructing a
transition probability matrix.

The first is technically incorrect, but is widely used and
easier to implement because it ignores compound
transitions (i.e., multiple transitions within a cycle).

You can get around these issues if you use a relatively
short cycle length.
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3. “Embed” the transition probability
matrix using the rate matrix
The two approaches

3a. Construct a transition probability matrix using rate-
to-probability conversion formulas.

3b. Embed the transition probability matrix using the rate
matrix exponential (i.e., ).P = eR
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3a. Rate-to-probability conversion
The probability of transitioning from health state  to
health state  is:

where  captures all the health states (i.e., columns) in the
transition rate matrix, and  is the time-step (e.g.,  if 1
year,  if one month, etc.).

A
B

= (1 − )pAB
rAB

∑ S rAS
e−( )t∑ S rAS

S
t t = 1

t = 1/12
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3a. Rate-to-probability conversion
Let’s build on our chronic heart failure example from
earlier. Here is the transition rate matrix we constructed:

CHF D_CHF D_OTH

CHF -0.131 0.125 0.006

D_CHF 0.000 0.000 0.000

D_OTH 0.000 0.000 0.000
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3a. Rate-to-probability conversion
Let’s now calculate the probability of transitioning from the
CHF state to D_CHF (death from heart failure).
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3a. Rate-to-probability conversion
Annual probability of transitioning from CHF to death from
CHF:

We can find each of these rates in our transition rate
matrix…

= (1 −pCHF,D_CHF
rCHF,D_CHF

+rCHF,D_CHF rCHF,D_OTH
e−( +rCHF,D_CHF rCHF,D
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3a. Rate-to-probability conversion
Annual probability of transitioning from CHF to death from
CHF:

CHF D_CHF D_OTH

CHF -0.131 0.125 0.006

D_CHF 0.000 0 0

D_OTH 0.000 0 0

= (1 − ) = 0.1172pCHF,D_CHF
0.125

0.125 + 0.006
e−(0.125+0.006)×1
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3a. Rate-to-probability conversion
Let’s now calculate the probability of transitioning from the
CHF state to D_OTH (death from other causes).
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3a. Rate-to-probability conversion
Annual probability of transitioning from CHF to death from
other causes:

CHF D_CHF D_OTH

CHF -0.131 0.125 0.006

D_CHF 0.000 0 0

D_OTH 0.000 0 0

= (1 − ) = 0.0056pCHF,D_CHF
0.006

0.125 + 0.006
e−(0.125+0.006)×1
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3a. Rate-to-probability conversion

We now have the quantities needed to complete the first
row of our transition rate matrix.

Recall that the diagonal elements of the transition
probability matrix are just 1 minus the other transition
probabilities.
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3a. Rate-to-probability conversion
Calculated transition probability matrix:

CHF D_CHF D_OTH

CHF 0.8772 0.1172 0.0056

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000
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3b. Exponentiate the transition rate matrix

The most technically correct approach for “embedding” a
transition probability matrix is using the rate matrix
exponential.

This is a matrix analogue to the cellwise rate-to-
probability matrix process we just went through.
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3b. Exponentiate the transition rate matrix

P = eR
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3b. Exponentiate the transition rate matrix
Pros:

Embedding the transition probability matrix in this way
ensures that the correct transition probabilities are
calculated.

Without going into too many details, this approach
ensures that some compound transitions are not
“hidden” in the Markov cycle.

This ensures that our discrete time Markov model
accurately represents the underlying continuous time
process.
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3b. Exponentiate the transition rate matrix
Cons:

A major drawback is that this approach can create some
“jumpover” states that are seemingly inconsistent with
the underlying model (see blog for more).

Accounting for “hidden” transitions and jumpover states
requires augmenting the transition probability matrix
(again, see blog for details).

64

Back to Website



3b. Exponentiate the transition rate matrix
Cons, cont’d:

Excel does not easily do matrix exponentiation, however
you can use an approximation via a “power series
expansion”

Modern (free) statistical software can easily exponentiate
a matrix:
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3b. Exponentiate the transition rate matrix
Cons, cont’d:

Excel does not easily do matrix exponentiation, however
you can use an approximation (we’ll do this in a case
study).

Modern (free) statistical software can easily exponentiate
a matrix:

library(expm)1
m_P = expm(m_R)2
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3b. Exponentiate the transition rate matrix
For our chronic heart failure example, the exponentiated
matrix yields a very similar answer to the first approach:

CHF D_CHF D_OTH

CHF 0.8772 0.1172 0.0056

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000
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So Where Are We Now?
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So Where Are We Now?

By constructing our model using the “roots” of a
transition rate matrix, we can incorporate disparate
sources of information.

Facilitates country/region-specific background mortality.

Facilitates standardizing inputs measured at different
time intervals.
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So Where Are We Now?

Not all literature-based parameters operate on transition
rates.

You will often find that the strategies you want to model
have inputs based on odds ratios, relative risks, risk
differences, etc.
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CHF Example, Continued

Recall from earlier that we constructed two transition rate
matrices:

�. “Natural History” rate matrix

�. Strategy A (“New Drug”) rate matrix based on a hazard
ratio (for CHF mortality) of 0.8.
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CHF Example, Continued
These two rate matrices can be used to construct the
following transition probability matrices:

m_P_NH =

CHF D_CHF D_OTH

CHF 0.8772 0.1172 0.0056

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000

m_P_A =

CHF D_CHF D_OTH

CHF 0.8994 0.0949 0.0057

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000
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CHF Example, Continued

Now suppose we wanted to model a second strategy (“B”)
based on a randomized trial of another drug.

That trial reports an odds ratio (OR) of CHF death of
0.75.

The probability of CHF death in the placebo (control) arm
in that trial was 0.15.1
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CHF Example, Continued

An odds ratio is based on the odds of an outcome
happening, which is directly related to the probability.

Odds = 
Probability of Outcome

1−Probability of Outcome

Odds Ratio = 
Odds of outcome in exposed

Odds of outcome in unexposed
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CHF Example, Continued

Not all literature-based parameters operate on the rate scale. Some operate on
the probability scale!

Important
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4. Make adjustments to  as needed.P
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4. Make adjustments to  as needed.P
Constructing our final transition probability matrix—for
natural history or more specifically for for a stratgey
under consideration–may require further adjustment.

We must be careful about the scale on which these
parameters apply.

Odds ratios, relative risks, and risk differences all operate
on the probability scale.
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4. Make adjustments to  as needed.
Statistic Evaluates Range Applicable

Domain

Rate 0 to Rate
matrix

Hazard Ratio 0 to Rate
matrix

Probability/risk 0-1 Probability
matrix

Odds 0 to Probability
matrix

Odds Ratio 0 to Probability
matrix

Relative Risk 0 to Probability
matrix

Risk
Difference

-1 to 1 Probability
matrix

P
#events in time period

Total time period experienced by all subjects followed
∞

Hazard rate of outcome in exposed
Hazard rate of outcome in unexposed

∞

#events in time period
#people followed for time period

Probability of Outcome
1−Probability of Outcome

∞

Odds of outcome in exposed
Odds of outcome in unexposed

∞

Probability of outcome in exposed
Probablity of outcome in unexposed

∞

Probability of outcome in exposed − Probablity of outcome in unexposed
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4. Make adjustments to  as needed.Ps
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CHF Example, Continued
Let’s turn back to our CHF example.

Suppose we wanted to model a second strategy (“B”)
based on a randomized trial of another drug.

That trial reports an odds ratio (OR) of CHF death of
0.75.

The probability of CHF death in the placebo (control) arm
in that trial was 0.15.
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CHF Example, Continued

We can convert an odds ratio to a relative risk (i.e., ratio
of probabilities) if we know the baseline (unexposed)
probability of the outcome, .

In this case we were able to find  in the
underlying clinical trial.

If we didn’t have this information, we might assume its
the same (0.1172) as in our underlying natural history
probability matrix1

p0

= 0.15p0
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CHF Example, Continued

We can convert an odds ratio to a relative risk (RR).1

RR = = =Probability of outcome in exposed
Probablity of outcome in unexposed

p1
p0

OR
(1− +( ×OR))p0 p0

A relative risk is the ratio of the probability of the
outcome in the exposed group to the probability of the
outcome in the unexposed group.
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CHF Example, Continued

RR = p1
p0

= RR ×p1 p0

= 0.75 × .15 = 0.1125pDCHF
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CHF Example, Continued
m_P =

CHF D_CHF D_OTH

CHF 0.8772 0.1172 0.0056

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000

m_P_A =

CHF D_CHF D_OTH

CHF 0.8994 0.0949 0.0057

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000

m_P_B =

CHF D_CHF D_OTH

CHF 0.8819 0.1125 0.0056

D_CHF 0.0000 1.0000 0.0000

D_OTH 0.0000 0.0000 1.0000

Transition probability matrices (NH = Natural
History; A = Strategy A; B = Strategy B)
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Full Process
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Nonstationary
Transitions
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Transition Dynamics

We have focused on “static” transition rate/probability
matrices.

Often, transitions vary as a function of time.
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Transition Dynamics

Nonstationary rates: background mortality rate rises with
age.

Nonstationary rates: transition to disease status may vary
over different ages.

Time-dependent event transitions: rate of adverse events
after disease onset is higher in first cycle, lower in
subsequent cycles.
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Age-Varying Background Mortality

Useful data source is life table data. You used this in the
Alive-Dead case study!

May be available from vital statistics division in your
country.

Also available (by region)  and other
organizations.

from the UN
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Nonstationary Rates

Source: Russell et al. ( )

You may have other parameters that vary by age.

Disease specific mortality rate:

2016
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Nonstationary Rates

You may have other parameters that vary by age.

Disease specific mortality rate:

Age-specific intervention rates/probabilities
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Nonstationary Rates

It is straightforward to incorporate these dynamics into a
Markov model.

Essentially, you recalculate the transition probability
matrix in each cycle.

This works long as the underlying rates/probabilities
change by age.

Amua can handle all of this for you, provided you enter
the age-specific “lookup table” in the model (just as with
background mortality).
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Other Transition Dynamics

Suppose, instead, that event/transition rates, costs,
quality of life vary over the course of a disease or other
process in our model.

Example: cost, quality of life weight, or risk of adverse
event (e.g., death) is different in first year after disease
onset, and changes thereafter.

These types of dynamics are more challenging to
implement – but you can often do it!
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Other Transition Dynamics

One option is to simply build a decision tree around
events that occur at higher rates shortly after disease
onset, surgery, drug initiation, etc.

The decision tree can follow people until they reach a
“steady state” — then the Markov model can pick up from
there.
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Other Transition Dynamics

Another option is “tunnel states” — simply expand the
health state to follow people over the first few cycles of
onset.

Tunnel states are “non-markovian,” so they need to be
added once you have the transition probability matrix
defined.
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Tunnel States: Healthy, Sick, Dead

Let’s take a simple healthy, sick, dead model.

Illness onset rate = 0.0314

Background mortality rate = 0.0094

Illness increases the risk of death by a hazard ratio of
5.45.
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Tunnel States: Healthy, Sick, Dead
Transition rate matrix: 

H S D

H -0.0408 0.0314 0.0094

S 0.0000 -0.0513 0.0513

D 0.0000 0.0000 0.0000

R
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Tunnel States: Healthy, Sick, Dead
Transition probability matrix: 

H S D

H 0.96 0.03 0.01

S 0.00 0.95 0.05

D 0.00 0.00 1.00

exp(R)
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Tunnel States: Healthy, Sick, Dead

Now suppose that the probability of death from disease
varies by time since disease onset.

0.08 in first year

0.06 in second year

0.04 in third year onwards

We can add tunnel states to our transition probability
matrix to accomodate this.
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Tunnel States: Healthy, Sick, Dead

H S1 S2 S D

H 0.96 0.03 0.00 0.00 0.01

S1 0.00 0.00 0.92 0.00 0.08

S2 0.00 0.00 0.00 0.94 0.06

S 0.00 0.00 0.00 0.96 0.04

D 0.00 0.00 0.00 0.00 1.00

Here is the new transition probability matrix.

Notice how the tunnel states “force” people to transition
either to the next disease state if they do not die of the
disease in the cycle.

102

Back to Website



Tunnel States: Healthy, Sick, Dead

cycle H S1 S2 S S_total D

0 1000 0 0 0 0 0

1 960 30 0 0 30 10

2 922 29 28 0 57 22

3 885 28 26 26 80 35

4 849 27 25 50 102 49

5 815 25 24 72 121 63

If we run out the Markov trace for five cycles, here are the results.
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