In this example, model outputs are sensitive to uncertainty, but decisions are not.
In this example, model outputs are sensitive to uncertainty, but decisions are not.
Both model outputs and decisions are sensitive to uncertainty.
Both model outputs and decisions are sensitive to uncertainty.
Note that this picture represents common scenarios; uncertainty may be greater or lesser in any particular modeling context.
Note that this picture represents common scenarios; uncertainty may be greater or lesser in any particular modeling context. DES = discrete event simulation
Parameter Type | Distribution |
---|---|
Probability | beta |
Rate | gamma |
Utility weight | beta |
Right skew (e.g., cost) | gamma, lognormal |
Relative risks or hazard ratios | lognormal |
Odds Ratio | logistic |
For a given iteration j
Parameter Type | Distribution | Amua |
---|---|---|
Probability | beta | Beta(shape1,shape2,~) |
Rate | gamma | Gamma(shape, scale, ~) |
Utility weight | beta | Beta(shape1,shape2,~) |
Right skew (e.g., cost) | gamma, lognormal | LogNorm(shape,scale,~) |
Relative risks or hazard ratios | lognormal | LogNorm(shape,scale,~) |
Odds Ratio | logistic | Logistic(location, scale) |
Beta(95,5,~)
Beta(950,50,~)
CEACs summarize the degree of uncertainty as captured by our PSA.
CEAC represents the (Bayesian) probability of each option being cost-effective at different levels of the cost-effectiveness threshold \lambda.
\lambda = 50000
Net Monetary Benefit
TOTQALY * \lambda - TOTCOST
Net Health Benefit TOTQALY - $$
PSA_ID | totcost_trtA | totcost_trtB | totcost_trtC | totcost_trtD | totcost_trtE | totqaly_trtA | totqaly_trtB | totqaly_trtC | totqaly_trtD | totqaly_trtE |
---|---|---|---|---|---|---|---|---|---|---|
1 | 19619 | 25588 | 37065 | 23998 | 40797 | 18.537 | 18.615 | 18.726 | 18.653 | 18.653 |
2 | 11777 | 17379 | 36873 | 19454 | 45568 | 17.011 | 17.108 | 17.197 | 17.135 | 17.135 |
3 | 13292 | 19269 | 33790 | 19886 | 41933 | 17.251 | 17.359 | 17.511 | 17.462 | 17.462 |
4 | 14652 | 19102 | 25154 | 19246 | 33977 | 16.128 | 16.131 | 16.378 | 16.254 | 16.254 |
5 | 13287 | 15913 | 26998 | 18688 | 39153 | 15.938 | 16.037 | 16.141 | 16.076 | 16.076 |
6 | 14959 | 17506 | 32929 | 20603 | 49327 | 16.016 | 16.089 | 16.287 | 16.183 | 16.183 |
PSA_ID | NMB_A | NMB_B | NMB_C | NMB_D | NMB_E |
---|---|---|---|---|---|
1 | 907239 | 905168 | 899245 | 908648 | 891849 |
2 | 838749 | 838035 | 822957 | 837314 | 811200 |
3 | 849279 | 848687 | 841748 | 853212 | 831165 |
4 | 791727 | 787466 | 793733 | 793440 | 778708 |
5 | 783630 | 785914 | 780057 | 785112 | 764647 |
6 | 785829 | 786922 | 781411 | 788536 | 759811 |
PSA_ID | NMB_A | NMB_B | NMB_C | NMB_D | NMB_E |
---|---|---|---|---|---|
1 | 907239 | 905168 | 899245 | 908648 | 891849 |
2 | 838749 | 838035 | 822957 | 837314 | 811200 |
3 | 849279 | 848687 | 841748 | 853212 | 831165 |
4 | 791727 | 787466 | 793733 | 793440 | 778708 |
5 | 783630 | 785914 | 780057 | 785112 | 764647 |
6 | 785829 | 786922 | 781411 | 788536 | 759811 |
PSA_ID | MAX_IS_A | MAX_IS_B | MAX_IS_C | MAX_IS_D | MAX_IS_E |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 1 | 0 |
2 | 1 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 1 | 0 |
lambda | MAX_IS_A | MAX_IS_B | MAX_IS_C | MAX_IS_D | MAX_IS_E |
---|---|---|---|---|---|
50000 | 0.1667 | 0.1667 | 0.1667 | 0.5 | 0 |
lambda | MAX_IS_A | MAX_IS_B | MAX_IS_C | MAX_IS_D | MAX_IS_E |
---|---|---|---|---|---|
20000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0 |
40000 | 0.1667 | 0.1667 | 0.0000 | 0.6667 | 0 |
50000 | 0.1667 | 0.1667 | 0.1667 | 0.5000 | 0 |
60000 | 0.0000 | 0.3333 | 0.1667 | 0.5000 | 0 |
80000 | 0.0000 | 0.0000 | 0.1667 | 0.8333 | 0 |
100000 | 0.0000 | 0.0000 | 0.1667 | 0.8333 | 0 |
120000 | 0.0000 | 0.0000 | 0.3333 | 0.6667 | 0 |
140000 | 0.0000 | 0.0000 | 0.5000 | 0.5000 | 0 |
160000 | 0.0000 | 0.0000 | 0.5000 | 0.5000 | 0 |
180000 | 0.0000 | 0.0000 | 0.6667 | 0.3333 | 0 |
200000 | 0.0000 | 0.0000 | 0.6667 | 0.3333 | 0 |
Fenwick et al. (2001) the probability of being cost-effective cannot be used to determine the optimal option.
If the objective is to maximize health gain, decisions should be made based on expected net benefit, regardless of the uncertainty associated with the decision.
The lowest value of \lambda for which a given strategy is optimal is \approx ICER for that strategy.
The highest value of \lambda for which a given strategy is optimal is the ICER for the next most costly option.
Recall the two questions from the beginning of this talk:
CEAC and CEAF provide information on the degree to which uncertainty informs question 1.
These plots can help give us a sense of whether more research to reduce uncertainty may be valuable (Question 2).
Value of Information analyses provide a more concrete answer to Question 2.
You can use VOI methods with your PSA sample to rank-order parameters in terms of their importance in informing decision uncertainty.
Next slides briefly show you how to construct one VOI measure: the expected value of perfect information.
On average, we would select strategy s^* because it results in the highest expected health gain (i.e., it maximizes \overline{NMB}(s^*)).
But what if that decision is wrong?
The difference between NMB_m(s_m) and \overline{NMB}(s^*) for any PSA iteration provides an estimate of the opportunity cost of making the wrong decision.
If s_m=s^*, then s_m - s^* = 0.
The difference between NMB_m(s_m) and \overline{NMB}(s^*) for any PSA iteration provides an estimate of the opportunity cost of making the wrong decision.
If s_m>s^*, then s_m - s^* > 0.
The average value of s_m - s^* in our PSA sample is the expected value of perfect information (EVPI)
It summarizes the degree to which there is an oportunity cost to making the wrong decision in our model.
Strategy | Cost | Effect | ICER | Status |
---|---|---|---|---|
A | 16454 | 17.332 | NA | ND |
D | 24504 | 17.491 | 50478 | ND |
C | 33443 | 17.580 | 101292 | ND |
B | 21457 | 17.409 | NA | ED |
E | 43332 | 17.491 | NA | D |