Methods and thoughts on defining geographic markets for health care services, i.e., a guided tour of a particularly complex rabbit hole.
johngraves Wed Jan 16 16:37:30 2019
suppressWarnings(suppressMessages(source(here::here("/R/manifest.R"))))
source(here("R/move-ak-hi.R"))
source(here("R/get-geographic-info.R"))
source(here("R/map-theme.R"))
county_map <- readOGR(dsn=here("public-data/shape-files/county-2017/cb_2017_us_county_5m/cb_2017_us_county_5m.shp"),
layer = "cb_2017_us_county_5m",verbose = FALSE)
# Get Gegographic Information (e.g., centroid, contiguous geographies, etc.)
df_county_info <-
county_map %>%
subset(GEOID != "99") %>%
get_geograhic_info()
# Create a ggplot-friendly map data frame.
county_map <- move_ak_hi(county_map,type="county")
county_map$fips_code <- paste0(county_map$GEOID)
county_map$lng <- unlist(lapply(county_map@polygons, function(dt) dt@labpt[1]))
county_map$lat <- unlist(lapply(county_map@polygons, function(dt) dt@labpt[2]))
# Project to albers
county_map <- spTransform(county_map,CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96"))
# simplify the polgons a tad (tweak 0.00001 to your liking)
#simplify_polygon = FALSE
#if (simplify_polygon) df_map <- gSimplify(df_map, tol = 0.00001)
county_map <- gBuffer(county_map, byid=TRUE, width=0)
df_county_map = fortify(county_map,region = "fips_code") %>%
rename(fips_code = id) %>%
dplyr::select(fips_code,everything()) %>%
tbl_df()
write_rds(df_county_map,here("output/tidy-mapping-files/county/","df_county.rds"))
df_county_map %>%
filter(grepl("^47",fips_code)) %>%
tbl_df() %>%
mutate(test = factor(sample(1:10,nrow(.),replace=TRUE))) %>%
ggplot() +
aes(long,lat,group=group) +
geom_polygon(aes(fill = test)) +
geom_path(color="black") +
coord_equal() +
ggthemes::theme_tufte() +
theme(legend.position = "none") +
remove_all_axes